» Articles » PMID: 17119913

Modeling Segregation Distortion for Viability Selection. I. Reconstruction of Linkage Maps with Distorted Markers

Overview
Publisher Springer
Specialty Genetics
Date 2006 Nov 23
PMID 17119913
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Molecular markers have been widely used to map quantitative trait loci (QTL). The QTL mapping partly relies on accurate linkage maps. The non-Mendelian segregation of markers, which affects not only the estimation of genetic distance between two markers but also the order of markers on a same linkage group, is usually observed in QTL analysis. However, these distorted markers are often ignored in the real data analysis of QTL mapping so that some important information may be lost. In this paper, we developed a multipoint approach via Hidden Markov chain model to reconstruct the linkage maps given a specified gene order while simultaneously making use of distorted, dominant and missing markers in an F(2) population. The new method was compared with the methods in the MapManager and Mapmaker programs, respectively, and verified by a series of Monte Carlo simulation experiments along with a working example. Results showed that the adjusted linkage maps can be used for further QTL or segregation distortion locus (SDL) analysis unless there are strong evidences to prove that all markers show normal Mendelian segregation.

Citing Articles

QTL mapping and GWAS for field kernel water content and kernel dehydration rate before physiological maturity in maize.

Li S, Zhang C, Lu M, Yang D, Qian Y, Yue Y Sci Rep. 2020; 10(1):13114.

PMID: 32753586 PMC: 7403598. DOI: 10.1038/s41598-020-69890-3.


High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ().

Deo T, Ferreira R, Lara L, Moraes A, Alves-Pereira A, de Oliveira F Front Plant Sci. 2020; 11:15.

PMID: 32161603 PMC: 7054243. DOI: 10.3389/fpls.2020.00015.


Effect of marker segregation distortion on high density linkage map construction and QTL mapping in Soybean (Glycine max L.).

Zuo J, Niu Y, Cheng P, Feng J, Han S, Zhang Y Heredity (Edinb). 2019; 123(5):579-592.

PMID: 31152165 PMC: 6972858. DOI: 10.1038/s41437-019-0238-7.


Construction of a genetic linkage map in Pyropia yezoensis (Bangiales, Rhodophyta) and QTL analysis of several economic traits of blades.

Huang L, Yan X PLoS One. 2019; 14(3):e0209128.

PMID: 30849086 PMC: 6407771. DOI: 10.1371/journal.pone.0209128.


Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers.

Ramekar R, Sa K, Park K, Roy N, Kim N, Lee J Breed Sci. 2018; 68(4):465-473.

PMID: 30369821 PMC: 6198908. DOI: 10.1270/jsbbs.18017.


References
1.
Lorieux M, Goffinet B, Perrier X, de Leon D, Lanaud C . Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet. 2013; 90(1):73-80. DOI: 10.1007/BF00220998. View

2.
Manly K, Cudmore Jr R, Meer J . Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 2001; 12(12):930-2. DOI: 10.1007/s00335-001-1016-3. View

3.
Lander E, Green P . Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987; 84(8):2363-7. PMC: 304651. DOI: 10.1073/pnas.84.8.2363. View

4.
Lander E, Botstein D . Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989; 121(1):185-99. PMC: 1203601. DOI: 10.1093/genetics/121.1.185. View

5.
Lander E, Green P, ABRAHAMSON J, Barlow A, Daly M, Lincoln S . MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987; 1(2):174-81. DOI: 10.1016/0888-7543(87)90010-3. View