» Articles » PMID: 17108161

GABAergic Excitation in the Basolateral Amygdala

Overview
Journal J Neurosci
Specialty Neurology
Date 2006 Nov 17
PMID 17108161
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.

Citing Articles

GABAAR-mediated tonic inhibition differentially modulates intrinsic excitability of VIP- and SST- expressing interneurons in layers 2/3 of the somatosensory cortex.

Bogaj K, Kaplon R, Urban-Ciecko J Front Cell Neurosci. 2023; 17:1270219.

PMID: 37900589 PMC: 10602639. DOI: 10.3389/fncel.2023.1270219.


Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment.

Shang Z, Huang J, Liu N, Zhang X Neurosci Bull. 2022; 39(1):1-13.

PMID: 35639277 PMC: 9849666. DOI: 10.1007/s12264-022-00887-w.


A protocol to investigate cellular and circuit mechanisms generating sharp wave ripple oscillations in rodent basolateral amygdala using slices.

Perumal M, Sah P STAR Protoc. 2022; 3(1):101085.

PMID: 35072114 PMC: 8761775. DOI: 10.1016/j.xpro.2021.101085.


Inhibitory Circuits in the Basolateral Amygdala in Aversive Learning and Memory.

Perumal M, Sah P Front Neural Circuits. 2021; 15:633235.

PMID: 33994955 PMC: 8120102. DOI: 10.3389/fncir.2021.633235.


Microcircuit mechanisms for the generation of sharp-wave ripples in the basolateral amygdala: A role for chandelier interneurons.

Perumal M, Latimer B, Xu L, Stratton P, Nair S, Sah P Cell Rep. 2021; 35(6):109106.

PMID: 33979609 PMC: 9136954. DOI: 10.1016/j.celrep.2021.109106.


References
1.
Galarreta M, HESTRIN S . A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature. 1999; 402(6757):72-5. DOI: 10.1038/47029. View

2.
Gibson J, Beierlein M, Connors B . Two networks of electrically coupled inhibitory neurons in neocortex. Nature. 1999; 402(6757):75-9. DOI: 10.1038/47035. View

3.
Kemppainen S, Pitkanen A . Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol. 2000; 426(3):441-67. DOI: 10.1002/1096-9861(20001023)426:3<441::aid-cne8>3.0.co;2-7. View

4.
McDonald A, Betette R . Parvalbumin-containing neurons in the rat basolateral amygdala: morphology and co-localization of Calbindin-D(28k). Neuroscience. 2001; 102(2):413-25. DOI: 10.1016/s0306-4522(00)00481-4. View

5.
McBain C, Fisahn A . Interneurons unbound. Nat Rev Neurosci. 2001; 2(1):11-23. DOI: 10.1038/35049047. View