» Articles » PMID: 17074748

A Single TRNA Base Pair Mediates Bacterial TRNA-dependent Biosynthesis of Asparagine

Overview
Specialty Biochemistry
Date 2006 Nov 1
PMID 17074748
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

In many prokaryotes and in organelles asparagine and glutamine are formed by a tRNA-dependent amidotransferase (AdT) that catalyzes amidation of aspartate and glutamate, respectively, mischarged on tRNAAsn and tRNAGln. These pathways supply the deficiency of the organism in asparaginyl- and glutaminyl-tRNA synthtetases and provide the translational machinery with Asn-tRNAAsn and Gln-tRNAGln. So far, nothing is known about the structural elements that confer to tRNA the role of a specific cofactor in the formation of the cognate amino acid. We show herein, using aspartylated tRNAAsn and tRNAAsp variants, that amidation of Asp acylating tRNAAsn is promoted by the base pair U1-A72 whereas the G1-C72 pair and presence of the supernumerary nucleotide U20A in the D-loop of tRNAAsp prevent amidation. We predict, based on comparison of tRNAGln and tRNAGlu sequence alignments from bacteria using the AdT-dependent pathway to form Gln-tRNAGln, that the same combination of nucleotides also rules specific tRNA-dependent formation of Gln. In contrast, we show that the tRNA-dependent conversion of Asp into Asn by archaeal AdT is mainly mediated by nucleotides G46 and U47 of the variable region. In the light of these results we propose that bacterial and archaeal AdTs use kingdom-specific signals to catalyze the tRNA-dependent formations of Asn and Gln.

Citing Articles

The tRNA identity landscape for aminoacylation and beyond.

Giege R, Eriani G Nucleic Acids Res. 2023; 51(4):1528-1570.

PMID: 36744444 PMC: 9976931. DOI: 10.1093/nar/gkad007.


Clinically Relevant Mutations of Mycobacterial GatCAB Inform Regulation of Translational Fidelity.

Li Y, Cai R, Yang J, Hendrickson T, Xiang Y, Javid B mBio. 2021; 12(4):e0110021.

PMID: 34225495 PMC: 8406222. DOI: 10.1128/mBio.01100-21.


BpForms and BcForms: a toolkit for concretely describing non-canonical polymers and complexes to facilitate global biochemical networks.

Lang P, Chebaro Y, Zheng X, Sekar J, Shaikh B, Natale D Genome Biol. 2020; 21(1):117.

PMID: 32423472 PMC: 7236495. DOI: 10.1186/s13059-020-02025-z.


Development of Assay Systems for Amber Codon Decoding at the Steps of Initiation and Elongation in Mycobacteria.

Govindan A, Miryala S, Mondal S, Varshney U J Bacteriol. 2018; 200(22).

PMID: 30181124 PMC: 6199473. DOI: 10.1128/JB.00372-18.


Aminoacyl-tRNA Synthetases in the Bacterial World.

Giege R, Springer M EcoSal Plus. 2016; 7(1).

PMID: 27223819 PMC: 11575706. DOI: 10.1128/ecosalplus.ESP-0002-2016.


References
1.
Becker H, Giege R, Kern D . Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Biochemistry. 1996; 35(23):7447-58. DOI: 10.1021/bi9601058. View

2.
Sherman J, Soll D . Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs. Biochemistry. 1996; 35(2):601-7. DOI: 10.1021/bi951602b. View

3.
Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S . Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998; 26(1):148-53. PMC: 147216. DOI: 10.1093/nar/26.1.148. View

4.
Fechter P, Rudinger J, Giege R, Theobald-Dietrich A . Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett. 1998; 436(1):99-103. DOI: 10.1016/s0014-5793(98)01096-5. View

5.
Becker H, Kern D . Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci U S A. 1998; 95(22):12832-7. PMC: 23616. DOI: 10.1073/pnas.95.22.12832. View