» Articles » PMID: 17026330

Quadrupolar Phases of the S=1 Bilinear-biquadratic Heisenberg Model on the Triangular Lattice

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2006 Oct 10
PMID 17026330
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Using mean-field theory, exact diagonalizations, and SU(3) flavor theory, we have precisely mapped out the phase diagram of the S = 1 bilinear-biquadratic Heisenberg model on the triangular lattice in a magnetic field, with emphasis on the quadrupolar phases and their excitations. In particular, we show that ferroquadrupolar order can coexist with short-range helical magnetic order, and that the antiferroquadrupolar phase is characterized by a remarkable 2/3 magnetization plateau, in which one site per triangle retains quadrupolar order while the other two are polarized along the field. Implications for actual S=1 magnets are discussed.

Citing Articles

Canted antiferromagnetism in a spin-orbit coupled S = 3/2 triangular-lattice magnet DyAuGe.

Kurumaji T, Gen M, Kitou S, Ikeuchi K, Sagayama H, Nakao H Nat Commun. 2025; 16(1):2176.

PMID: 40038259 PMC: 11880533. DOI: 10.1038/s41467-025-57318-3.


Bose-Einstein condensation of a two-magnon bound state in a spin-1 triangular lattice.

Sheng J, Mei J, Wang L, Xu X, Jiang W, Xu L Nat Mater. 2025; .

PMID: 39833392 DOI: 10.1038/s41563-024-02071-z.


Exfoliation and optical properties of S = 1 triangular lattice antiferromagnet NiGaS.

Victorin J, Razpopov A, Higo T, Dziobek-Garrett R, Kempa T, Nakatsuji S Sci Rep. 2024; 14(1):28040.

PMID: 39543262 PMC: 11564642. DOI: 10.1038/s41598-024-77804-w.


Quantum spin nematic phase in a square-lattice iridate.

Kim H, Kim J, Kwon J, Kim J, Kim H, Ha S Nature. 2023; 625(7994):264-269.

PMID: 38093009 DOI: 10.1038/s41586-023-06829-4.


CP skyrmions and skyrmion crystals in realistic quantum magnets.

Zhang H, Wang Z, Dahlbom D, Barros K, Batista C Nat Commun. 2023; 14(1):3626.

PMID: 37336881 PMC: 10279712. DOI: 10.1038/s41467-023-39232-8.