» Articles » PMID: 17018615

In Vivo and in Vitro Evidence for Transforming Growth Factor-beta1-mediated Epithelial to Mesenchymal Transition in Esophageal Adenocarcinoma

Overview
Journal Cancer Res
Specialty Oncology
Date 2006 Oct 5
PMID 17018615
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

There is increasing evidence that epithelial to mesenchymal transition (EMT) is involved in cancer progression. Because local invasion and metastasis occurs early in the pathogenesis of esophageal adenocarcinoma, we hypothesized that EMT may be important in this disease. Using immunohistochemistry in a well-characterized set of adenocarcinoma tissues, we showed down-regulation of epithelial markers (E-cadherin and cytokeratin 18) and up-regulation of mesenchymal markers (vimentin and alpha-smooth muscle actin) with concomitant transforming growth factor-beta1 (TGF-beta1) expression at the invasive margin compared with the central tumor. A panel of esophageal cell lines was examined for the ability of TGF-beta1 to induce EMT in vitro. TE7 cells were selected as a model because TGF-beta1 (0-5 ng/mL) treatment induced morphologic and molecular expression changes suggestive of EMT. In TE7 cells, these TGF-beta1-induced changes were reversed by 100 ng/mL of bone morphogenetic protein 7 (BMP7), another member of the TGF-beta1 superfamily. EMT was mediated via canonical TGF-beta1 signaling with concomitant up-regulation of SMAD-interacting protein 1. Alterations in functional variables (aggregation, wounding, motility, and invasion) following TGF-beta1 treatment were consistent with a more invasive phenotype. These functional changes were reversed by BMP7 and SMAD4 RNA interference in vitro. These data suggest that TGF-beta1-mediated EMT may be relevant in esophageal carcinogenesis.

Citing Articles

Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response.

Ebrahimi N, Manavi M, Faghihkhorasani F, Fakhr S, Baei F, Khorasani F Cancer Metastasis Rev. 2024; 43(1):457-479.

PMID: 38227149 DOI: 10.1007/s10555-023-10162-7.


Network and pathway-based analysis of candidate genes associated with esophageal adenocarcinoma.

Li J, Peng L, Li H, Cai Y, Yao P, Chen Q J Gastrointest Oncol. 2023; 14(1):40-53.

PMID: 36915458 PMC: 10007923. DOI: 10.21037/jgo-22-1286.


Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids.

Moskwa N, Mahmood A, Nelson D, Altrieth A, Forni P, Larsen M Development. 2022; 149(6).

PMID: 35224622 PMC: 8977102. DOI: 10.1242/dev.200167.


Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs.

Zeng Z, Ma C, Chen K, Jiang M, Vasu R, Liu R Cells. 2021; 10(11).

PMID: 34831211 PMC: 8616429. DOI: 10.3390/cells10112988.


TGF-β1: is it related to the stiffness of breast lesions and can it predict axillary lymph node metastasis?.

Zhang M, Shang Q, Li S, Wang B, Liu G, Wang Z Ann Transl Med. 2021; 9(10):870.

PMID: 34164504 PMC: 8184473. DOI: 10.21037/atm-21-1705.