» Articles » PMID: 17015669

Comparative Phylogenomics of Clostridium Difficile Reveals Clade Specificity and Microevolution of Hypervirulent Strains

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2006 Oct 4
PMID 17015669
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

Clostridium difficile is the most frequent cause of nosocomial diarrhea worldwide, and recent reports suggested the emergence of a hypervirulent strain in North America and Europe. In this study, we applied comparative phylogenomics (whole-genome comparisons using DNA microarrays combined with Bayesian phylogenies) to model the phylogeny of C. difficile, including 75 diverse isolates comprising hypervirulent, toxin-variable, and animal strains. The analysis identified four distinct statistically supported clusters comprising a hypervirulent clade, a toxin A(-) B(+) clade, and two clades with human and animal isolates. Genetic differences among clades revealed several genetic islands relating to virulence and niche adaptation, including antibiotic resistance, motility, adhesion, and enteric metabolism. Only 19.7% of genes were shared by all strains, confirming that this enteric species readily undergoes genetic exchange. This study has provided insight into the possible origins of C. difficile and its evolution that may have implications in disease control strategies.

Citing Articles

Comparative Genomics of Clostridioides difficile.

Janezic S, Garneau J, Monot M Adv Exp Med Biol. 2024; 1435:199-218.

PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10.


Ribotypes and New Virulent Strains Across Europe.

Couturier J, Davies K, Barbut F Adv Exp Med Biol. 2024; 1435:151-168.

PMID: 38175475 DOI: 10.1007/978-3-031-42108-2_8.


Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile.

Olaitan A, Dureja C, Youngblom M, Topf M, Shen W, Gonzales-Luna A Nat Commun. 2023; 14(1):4130.

PMID: 37438331 PMC: 10338468. DOI: 10.1038/s41467-023-39429-x.


Detection and Genomic Characterisation of from Spinach Fields.

Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D Pathogens. 2022; 11(11).

PMID: 36365061 PMC: 9695345. DOI: 10.3390/pathogens11111310.


Capturing the environment of the Clostridioides difficile infection cycle.

Schnizlein M, Young V Nat Rev Gastroenterol Hepatol. 2022; 19(8):508-520.

PMID: 35468953 DOI: 10.1038/s41575-022-00610-0.


References
1.
Hinchliffe S, Isherwood K, Stabler R, Prentice M, Rakin A, Nichols R . Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res. 2003; 13(9):2018-29. PMC: 403674. DOI: 10.1101/gr.1507303. View

2.
Fawley W, Freeman J, Wilcox M . Evidence to support the existence of subgroups within the UK epidemic Clostridium difficile strain (PCR ribotype 1). J Hosp Infect. 2003; 54(1):74-7. DOI: 10.1016/s0195-6701(03)00079-3. View

3.
He G, Kuroda T, Mima T, Morita Y, Mizushima T, Tsuchiya T . An H(+)-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J Bacteriol. 2003; 186(1):262-5. PMC: 303449. DOI: 10.1128/JB.186.1.262-265.2004. View

4.
Toyokawa M, Ueda A, Tsukamoto H, Nishi I, Horikawa M, Sunada A . Pseudomembranous colitis caused by toxin A-negative/toxin B-positive variant strain of Clostridium difficile. J Infect Chemother. 2003; 9(4):351-4. DOI: 10.1007/s10156-003-0269-z. View

5.
Lemee L, Dhalluin A, Pestel-Caron M, Lemeland J, Pons J . Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. J Clin Microbiol. 2004; 42(6):2609-17. PMC: 427854. DOI: 10.1128/JCM.42.6.2609-2617.2004. View