» Articles » PMID: 17004065

Segmentation of Fascias, Fat and Muscle from Magnetic Resonance Images in Humans: the DISPIMAG Software

Overview
Journal MAGMA
Publisher Springer
Date 2006 Sep 28
PMID 17004065
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Segmentation of human limb MR images into muscle, fat and fascias remains a cumbersome task. We have developed a new software (DISPIMAG) that allows automatic and highly reproducible segmentation of lower-limb MR images. Based on a pixel intensity analysis, this software does not need any previous mathematical or statistical assumptions. It displays a histogram with two main signals corresponding to fat and muscle, and permits an accurate quantification of their relative spatial distribution. To allow a systematic discrimination between muscle and fat in any subject, fixed boundaries were first determined manually in a group of 24 patients. Secondly, an entirely automatic process using these boundaries was tested by three operators on four patients and compared to the manual approach, showing a high concordance.

Citing Articles

.

Engelke K, Chaudry O, Gast L, Eldib M, Wang L, Laredo J J Orthop Translat. 2023; 42:57-72.

PMID: 37654433 PMC: 10465967. DOI: 10.1016/j.jot.2023.07.005.


Overview of MR Image Segmentation Strategies in Neuromuscular Disorders.

Ogier A, Hostin M, Bellemare M, Bendahan D Front Neurol. 2021; 12:625308.

PMID: 33841299 PMC: 8027248. DOI: 10.3389/fneur.2021.625308.


Tumor protein 53-induced nuclear protein 1 deficiency alters mouse gastrocnemius muscle function and bioenergetics in vivo.

Warnez-Soulie J, Macia M, Lac S, Pecchi E, Bernard M, Bendahan D Physiol Rep. 2019; 7(10):e14055.

PMID: 31124296 PMC: 6533175. DOI: 10.14814/phy2.14055.


Combined quantification of fatty infiltration, T -relaxation times and T *-relaxation times in normal-appearing skeletal muscle of controls and dystrophic patients.

Leporq B, Le Troter A, Fur Y, Salort-Campana E, Guye M, Beuf O MAGMA. 2017; 30(4):407-415.

PMID: 28332039 DOI: 10.1007/s10334-017-0616-1.


Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials.

Carlier P, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin P, Snezhko E J Neuromuscul Dis. 2016; 3(1):1-28.

PMID: 27854210 PMC: 5271435. DOI: 10.3233/JND-160145.


References
1.
Gong Q, Phoenix J, Kemp G, Garcia-Finana M, Frostick S, Brodie D . Estimation of body composition in muscular dystrophy by MRI and stereology. J Magn Reson Imaging. 2000; 12(3):467-75. DOI: 10.1002/1522-2586(200009)12:3<467::aid-jmri13>3.0.co;2-g. View

2.
Mitsiopoulos N, Baumgartner R, Heymsfield S, Lyons W, Gallagher D, Ross R . Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol (1985). 1998; 85(1):115-22. DOI: 10.1152/jappl.1998.85.1.115. View

3.
Barra V, Boire J . Segmentation of fat and muscle from MR images of the thigh by a possibilistic clustering algorithm. Comput Methods Programs Biomed. 2002; 68(3):185-93. DOI: 10.1016/s0169-2607(01)00172-9. View

4.
Beneke R, Neuerburg J, Bohndorf K . Muscle cross-section measurement by magnetic resonance imaging. Eur J Appl Physiol Occup Physiol. 1991; 63(6):424-9. DOI: 10.1007/BF00868073. View

5.
Engstrom C, Loeb G, Reid J, FORREST W, Avruch L . Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat. 1991; 176:139-56. PMC: 1260321. View