Yamada K
J Physiol Sci. 2016; 67(1):19-43.
PMID: 27412384
PMC: 10717381.
DOI: 10.1007/s12576-016-0470-3.
Ryan T, Brophy P, Lin C, Hickner R, Neufer P
J Physiol. 2014; 592(15):3231-41.
PMID: 24951618
PMC: 4146372.
DOI: 10.1113/jphysiol.2014.274456.
Hill D
J Physiol. 1940; 98(4):467-79.
PMID: 16995219
PMC: 1394009.
DOI: 10.1113/jphysiol.1940.sp003865.
Hill D
J Physiol. 1940; 98(4):454-9.
PMID: 16995217
PMC: 1394017.
DOI: 10.1113/jphysiol.1940.sp003863.
Banks P
Biochem J. 1965; 97(2):555-60.
PMID: 16749163
PMC: 1264674.
DOI: 10.1042/bj0970555.
Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle.
Barclay C
J Muscle Res Cell Motil. 2005; 26(4-5):225-35.
PMID: 16322911
DOI: 10.1007/s10974-005-9013-x.
[Influence of frequency & thickness of fibers on the oxygenation of the human heart muscle].
OPTIZ E, THEWS G
Arch Kreislaufforsch. 1952; 18(5-6):137-52.
PMID: 14934226
THE ROLE OF PHOSPHOTRANSFERASES IN THE RESPIRATORY CONTROL OF THE EMBRYONIC HEART.
Eisenberg S, Ramirez J
J Physiol. 1963; 169:799-815.
PMID: 14103561
PMC: 1368801.
DOI: 10.1113/jphysiol.1963.sp007297.
Spectrophotometric studies on intact muscle. II. Recovery from contractile activity.
JOBSIS F
J Gen Physiol. 1963; 46:929-69.
PMID: 13957780
PMC: 2195306.
DOI: 10.1085/jgp.46.5.929.
[Theoretical bases for the determination of the consumptive function of contraction-dependent respiring muscles].
THEWS G
Pflugers Arch Gesamte Physiol Menschen Tiere. 1961; 273:367-79.
PMID: 13776258
Chemical energetics of slow- and fast-twitch muscles of the mouse.
Crow M, Kushmerick M
J Gen Physiol. 1982; 79(1):147-66.
PMID: 7061985
PMC: 2215489.
DOI: 10.1085/jgp.79.1.147.
Oxygen uptake of frog skeletal muscle fibres following tetanic contractions at 18 degrees C.
Elzinga G, Langewouters G, Westerhof N, Wiechmann A
J Physiol. 1984; 346:365-77.
PMID: 6607988
PMC: 1199505.
DOI: 10.1113/jphysiol.1984.sp015028.
Physical and biochemical energy balance during an isometric tetanus and steady state recovery in frog sartorius at 0 degree C.
Paul R
J Gen Physiol. 1983; 81(3):337-54.
PMID: 6601686
PMC: 2215577.
DOI: 10.1085/jgp.81.3.337.
The variation of muscle oxygen consumption with load.
Baskin R
J Physiol. 1965; 181(2):270-81.
PMID: 5866491
PMC: 1357638.
DOI: 10.1113/jphysiol.1965.sp007760.
The variation of muscle oxygen consumption with velocity of shortening.
Baskin R
J Gen Physiol. 1965; 49(1):9-15.
PMID: 5862509
PMC: 2195475.
DOI: 10.1085/jgp.49.1.9.
Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles.
Homsher E, MOMMAERTS W, RICCHIUTI N, Wallner A
J Physiol. 1972; 220(3):601-25.
PMID: 4536938
PMC: 1331672.
DOI: 10.1113/jphysiol.1972.sp009725.
Heat production and fluorescence changes of toad sartorius muscle during aerobic recovery after a short tetanus.
GODFRAIND-DE BECKER A
J Physiol. 1972; 223(3):719-34.
PMID: 4339903
PMC: 1331478.
DOI: 10.1113/jphysiol.1972.sp009871.
Oxidative and glycolytic recovery metabolism in muscle.
JOBSIS F, DUFFIELD J
J Gen Physiol. 1967; 50(4):1009-47.
PMID: 4291915
PMC: 2225690.
DOI: 10.1085/jgp.50.4.1009.
First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration.
Mahler M
J Gen Physiol. 1985; 86(1):135-65.
PMID: 4031824
PMC: 2228776.
DOI: 10.1085/jgp.86.1.135.
Reappraisal of diffusion, solubility, and consumption of oxygen in frog skeletal muscle, with applications to muscle energy balance.
Mahler M, Louy C, Homsher E, Peskoff A
J Gen Physiol. 1985; 86(1):105-34.
PMID: 4031823
PMC: 2228777.
DOI: 10.1085/jgp.86.1.105.