Orrell K, Melnyk R
Microbiol Mol Biol Rev. 2021; 85(3):e0006421.
PMID: 34076506
PMC: 8483668.
DOI: 10.1128/MMBR.00064-21.
Alvin J, Lacy D
J Struct Biol. 2017; 198(3):203-209.
PMID: 28433497
PMC: 5534367.
DOI: 10.1016/j.jsb.2017.04.006.
Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi R
PLoS One. 2017; 12(1):e0170640.
PMID: 28125650
PMC: 5268477.
DOI: 10.1371/journal.pone.0170640.
Chumbler N, Rutherford S, Zhang Z, Farrow M, Lisher J, Farquhar E
Nat Microbiol. 2016; 1:15002.
PMID: 27571750
PMC: 4976693.
DOI: 10.1038/nmicrobiol.2015.2.
Cherian R, Jin C, Liu J, Karlsson N, Holgersson J
Infect Immun. 2016; 84(10):2842-52.
PMID: 27456831
PMC: 5038087.
DOI: 10.1128/IAI.00341-16.
The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.
Weber M, Faris R, van Schaik E, McLachlan J, Wright W, Tellez A
Infect Immun. 2016; 84(9):2524-33.
PMID: 27324482
PMC: 4995899.
DOI: 10.1128/IAI.01554-15.
Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.
Cowardin C, Jackman B, Noor Z, Burgess S, Feig A, Petri Jr W
Infect Immun. 2016; 84(8):2317-2323.
PMID: 27271747
PMC: 4962640.
DOI: 10.1128/IAI.00327-16.
Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects.
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, Di Masi A
Toxins (Basel). 2016; 8(5).
PMID: 27153087
PMC: 4885049.
DOI: 10.3390/toxins8050134.
Pathogenic effects of glucosyltransferase from Clostridium difficile toxins.
Zhang Y, Feng H
Pathog Dis. 2016; 74(4):ftw024.
PMID: 27044305
PMC: 5985493.
DOI: 10.1093/femspd/ftw024.
The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
Chen S, Sun C, Wang H, Wang J
Toxins (Basel). 2015; 7(12):5254-67.
PMID: 26633511
PMC: 4690124.
DOI: 10.3390/toxins7124874.
A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters.
Wang Y, Yan Y, Kim H, Ju X, Zhao S, Zhang K
Hum Vaccin Immunother. 2015; 11(9):2215-22.
PMID: 26036797
PMC: 4635733.
DOI: 10.1080/21645515.2015.1052352.
DXD motif-dependent and -independent effects of the chlamydia trachomatis cytotoxin CT166.
Bothe M, Dutow P, Pich A, Genth H, Klos A
Toxins (Basel). 2015; 7(2):621-37.
PMID: 25690695
PMC: 4344646.
DOI: 10.3390/toxins7020621.
High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
DAuria K, Bloom M, Reyes Y, Gray M, Van Opstal E, Papin J
BMC Microbiol. 2015; 15:7.
PMID: 25648517
PMC: 4323251.
DOI: 10.1186/s12866-015-0361-4.
The combined repetitive oligopeptides of clostridium difficile toxin A counteract premature cleavage of the glucosyl-transferase domain by stabilizing protein conformation.
Olling A, Huls C, Goy S, Muller M, Krooss S, Rudolf I
Toxins (Basel). 2014; 6(7):2162-76.
PMID: 25054784
PMC: 4113749.
DOI: 10.3390/toxins6072162.
Caspase activation as a versatile assay platform for detection of cytotoxic bacterial toxins.
Payne A, Zorman J, Horton M, Dubey S, Ter Meulen J, Vora K
J Clin Microbiol. 2013; 51(9):2970-6.
PMID: 23824772
PMC: 3754665.
DOI: 10.1128/JCM.01161-13.
A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile.
Donald R, Flint M, Kalyan N, Johnson E, Witko S, Kotash C
Microbiology (Reading). 2013; 159(Pt 7):1254-1266.
PMID: 23629868
PMC: 3749728.
DOI: 10.1099/mic.0.066712-0.
The enterotoxicity of Clostridium difficile toxins.
Sun X, Savidge T, Feng H
Toxins (Basel). 2011; 2(7):1848-80.
PMID: 22069662
PMC: 3153265.
DOI: 10.3390/toxins2071848.
Impact of clostridial glucosylating toxins on the proteome of colonic cells determined by isotope-coded protein labeling and LC-MALDI.
Jochim N, Gerhard R, Just I, Pich A
Proteome Sci. 2011; 9:48.
PMID: 21849038
PMC: 3176154.
DOI: 10.1186/1477-5956-9-48.
The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A.
Olling A, Goy S, Hoffmann F, Tatge H, Just I, Gerhard R
PLoS One. 2011; 6(3):e17623.
PMID: 21445253
PMC: 3060812.
DOI: 10.1371/journal.pone.0017623.
Down-regulation of interleukin-16 in human mast cells HMC-1 by Clostridium difficile toxins A and B.
Gerhard R, Queisser S, Tatge H, Meyer G, Dittrich-Breiholz O, Kracht M
Naunyn Schmiedebergs Arch Pharmacol. 2011; 383(3):285-95.
PMID: 21267712
DOI: 10.1007/s00210-010-0592-8.