Lejeune C, Abreu S, Guerard F, Askora A, David M, Chaminade P
Microb Biotechnol. 2024; 17(8):e14538.
PMID: 39093579
PMC: 11296114.
DOI: 10.1111/1751-7915.14538.
Saric E, Quinn G, Nalpas N, Paradzik T, Kazazic S, Filic Z
mSystems. 2022; 7(5):e0019922.
PMID: 36094082
PMC: 9600765.
DOI: 10.1128/msystems.00199-22.
Zhang J, Liang Q, Xu Z, Cui M, Zhang Q, Abreu S
Front Microbiol. 2020; 11:1399.
PMID: 32655536
PMC: 7324645.
DOI: 10.3389/fmicb.2020.01399.
Suparmin A, Kato T, Takemoto H, Park E
Microbiologyopen. 2019; 8(9):e00836.
PMID: 30924317
PMC: 6741141.
DOI: 10.1002/mbo3.836.
Yague P, Lopez-Garcia M, Rioseras B, Sanchez J, Manteca A
FEMS Microbiol Lett. 2013; 342(2):79-88.
PMID: 23496097
PMC: 3654496.
DOI: 10.1111/1574-6968.12128.
Signals and regulators that govern Streptomyces development.
McCormick J, Flardh K
FEMS Microbiol Rev. 2011; 36(1):206-31.
PMID: 22092088
PMC: 3285474.
DOI: 10.1111/j.1574-6976.2011.00317.x.
Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor.
Manteca A, Alvarez R, Salazar N, Yague P, Sanchez J
Appl Environ Microbiol. 2008; 74(12):3877-86.
PMID: 18441105
PMC: 2446541.
DOI: 10.1128/AEM.02715-07.
Phosphoinositides are involved in control of the glucose-dependent growth resumption that follows the transition phase in Streptomyces lividans.
Chouayekh H, Nothaft H, Delaunay S, Linder M, Payrastre B, Seghezzi N
J Bacteriol. 2006; 189(3):741-9.
PMID: 17122350
PMC: 1797330.
DOI: 10.1128/JB.00891-06.
Mycelium development in Streptomyces antibioticus ATCC11891 occurs in an orderly pattern which determines multiphase growth curves.
Manteca A, Fernandez M, Sanchez J
BMC Microbiol. 2005; 5:51.
PMID: 16164744
PMC: 1249576.
DOI: 10.1186/1471-2180-5-51.
Cultivation system using glass beads immersed in liquid medium facilitates studies of Streptomyces differentiation.
Nguyen L, Kalachova L, Novotna J, Holub M, Kofronova O, Benada O
Appl Environ Microbiol. 2005; 71(6):2848-52.
PMID: 15932976
PMC: 1151819.
DOI: 10.1128/AEM.71.6.2848-2852.2005.
Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production.
Bishop A, Fielding S, Dyson P, Herron P
Genome Res. 2004; 14(5):893-900.
PMID: 15078860
PMC: 479117.
DOI: 10.1101/gr.1710304.
Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor.
Viollier P, Nguyen K, Minas W, Folcher M, Dale G, Thompson C
J Bacteriol. 2001; 183(10):3193-203.
PMID: 11325949
PMC: 95221.
DOI: 10.1128/JB.183.10.3193-3203.2001.
Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis.
Viollier P, Minas W, Dale G, Folcher M, Thompson C
J Bacteriol. 2001; 183(10):3184-92.
PMID: 11325948
PMC: 95220.
DOI: 10.1128/JB.183.10.3184-3192.2001.
Mathematical analysis of growth and interaction dynamics of streptomycetes and a bacteriophage in soil.
Burroughs N, Marsh P, Wellington E
Appl Environ Microbiol. 2000; 66(9):3868-77.
PMID: 10966402
PMC: 92232.
DOI: 10.1128/AEM.66.9.3868-3877.2000.
Growth phase-dependent transcription of the Streptomyces ramocissimus tuf1 gene occurs from two promoters.
Tieleman L, van Wezel G, Bibb M, Kraal B
J Bacteriol. 1997; 179(11):3619-24.
PMID: 9171408
PMC: 179156.
DOI: 10.1128/jb.179.11.3619-3624.1997.
Bald mutants of Streptomyces griseus that prematurely undergo key events of sporulation.
Kwak J, Kendrick K
J Bacteriol. 1996; 178(15):4643-50.
PMID: 8755896
PMC: 178235.
DOI: 10.1128/jb.178.15.4643-4650.1996.
Transcriptional analysis of groEL genes in Streptomyces coelicolor A3(2).
Duchene A, Thompson C, MAZODIER P
Mol Gen Genet. 1994; 245(1):61-8.
PMID: 7531276
DOI: 10.1007/BF00279751.