» Articles » PMID: 16925802

Role of Common Human TRIM5alpha Variants in HIV-1 Disease Progression

Overview
Journal Retrovirology
Publisher Biomed Central
Specialty Microbiology
Date 2006 Aug 24
PMID 16925802
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Background: The retroviral restriction factor tripartite motif protein (TRIM)5alpha, is characterized by marked amino acid diversity among primates, including specific clusters of residues under positive selection. The identification of multiple non-synonymous changes in humans suggests that TRIM5alpha variants might be relevant to retroviral pathogenesis. Previous studies have shown that such variants are unlikely to modify susceptibility to HIV-1 infection, or the course of early infection. However, the longterm effect of carrying Trim5alpha variants on disease progression in individuals infected with HIV-1 has not previously been investigated.

Methods: In a cohort of 979 untreated individuals infected with HIV-1 with median follow up 3.2 years and 9,828 CD4 T cell measurements, we analysed common amino acid variations: H43Y, V112F, R136Q, G249D, and H419Y. The rate of CD4 T cell decline before treatment was used as the phenotype. In addition, we extended previous work on the in vitro susceptibility of purified donor CD4 T cells (n = 125) to HIV-1 infection, and on the susceptibility of HeLa cells that were stably transduced with the different TRIM5 variants. Haplotypes were analysed according to the most parsimonious evolutionary structure, where two main human TRIM5alpha groups can be defined according to the residue at amino acid 136. Humans present both Q136 and R136 at similar frequency, and additional TRIM5alpha amino acid variants are almost exclusively derived from R136-carrying haplotypes.

Results: We observed modest differences in disease progression for evolutionary branches carrying R136-derived haplotypes, and with the non-synonymous polymorphisms G249D and H419Y. In vitro analysis of susceptibility of donor CD4 T cells, and of the various transduced HeLa cell lines supported the absence of significant differential restriction of HIV-1 infection by the various huTRIM5alpha alleles.

Conclusion: Common human variants of TRIM5alpha have no effect or modest effect on HIV-1 disease progression. These variants occur at sites conserved throughout evolution, and are remote from clusters of positive selection in the primate lineage. The evolutionary value of the substitutions remains unclear.

Citing Articles

Low prevalence of HIV in the northern Cameroon: contribution of some AIDS restriction genes and potential implications for gene therapy.

Djataou P, Djuidje Ngounoue M, Nkenfou-Tchinda C, Ngoufack M, Elong E, Tiga A Front Genet. 2024; 15:1447971.

PMID: 39346778 PMC: 11427317. DOI: 10.3389/fgene.2024.1447971.


The impact of bone marrow stromal antigen-2 (BST2) gene variants on HIV-1 control in black South African individuals.

Dias B, Paximadis M, Martinson N, Chaisson R, Ebrahim O, Tiemessen C Infect Genet Evol. 2020; 80:104216.

PMID: 32006707 PMC: 8752124. DOI: 10.1016/j.meegid.2020.104216.


Delayed disease progression in HIV-2: the importance of TRIM5α and the retroviral capsid.

Boswell M, Rowland-Jones S Clin Exp Immunol. 2019; 196(3):305-317.

PMID: 30773620 PMC: 6514420. DOI: 10.1111/cei.13280.


Targeting TRIM5α in HIV Cure Strategies for the CRISPR-Cas9 Era.

Weatherley D, Boswell M, Rowland-Jones S Front Immunol. 2017; 8:1616.

PMID: 29213273 PMC: 5702620. DOI: 10.3389/fimmu.2017.01616.


Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates.

Mamede J, Damond F, De Bernardo A, Matheron S, Descamps D, Battini J Sci Rep. 2017; 7:45214.

PMID: 28345672 PMC: 5366920. DOI: 10.1038/srep45214.


References
1.
CARPENTER C, Cooper D, Fischl M, Gatell J, Gazzard B, Hammer S . Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel. JAMA. 2000; 283(3):381-90. DOI: 10.1001/jama.283.3.381. View

2.
Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L . The tripartite motif family identifies cell compartments. EMBO J. 2001; 20(9):2140-51. PMC: 125245. DOI: 10.1093/emboj/20.9.2140. View

3.
Stremlau M, Owens C, Perron M, Kiessling M, Autissier P, Sodroski J . The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004; 427(6977):848-53. DOI: 10.1038/nature02343. View

4.
Williams L, Cloyd M . Polymorphic human gene(s) determines differential susceptibility of CD4 lymphocytes to infection by certain HIV-1 isolates. Virology. 1991; 184(2):723-8. DOI: 10.1016/0042-6822(91)90442-e. View

5.
Yap M, Nisole S, Stoye J . A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol. 2005; 15(1):73-8. DOI: 10.1016/j.cub.2004.12.042. View