Rahmani H, Larachi F, Taghavi S
ACS Eng Au. 2024; 4(2):166-192.
PMID: 38646519
PMC: 11027103.
DOI: 10.1021/acsengineeringau.3c00048.
Li L, Wei J, Zhang J, Li B, Yang Y, Zhang J
Sci Adv. 2023; 9(42):eadj1554.
PMID: 37862425
PMC: 10588945.
DOI: 10.1126/sciadv.adj1554.
Kamruzzaman M, Zapien J
Nanoscale Adv. 2023; 5(14):3717-3728.
PMID: 37441253
PMC: 10334411.
DOI: 10.1039/d3na00299c.
He X, Liu Y, Zhan H, Liu Y, Zhao L, Feng S
Biomimetics (Basel). 2023; 8(1).
PMID: 36975346
PMC: 10046520.
DOI: 10.3390/biomimetics8010116.
Wang Q, Liu C, Wang H, Yin K, Yu Z, Wang T
Nanomaterials (Basel). 2023; 13(4).
PMID: 36839104
PMC: 9965063.
DOI: 10.3390/nano13040736.
A single parameter can predict surfactant impairment of superhydrophobic drag reduction.
Temprano-Coleto F, Smith S, Peaudecerf F, Landel J, Gibou F, Luzzatto-Fegiz P
Proc Natl Acad Sci U S A. 2023; 120(3):e2211092120.
PMID: 36634141
PMC: 9934013.
DOI: 10.1073/pnas.2211092120.
Surface Tension and Viscosity Dependence of Slip Length over Irregularly Structured Superhydrophobic Surfaces.
Zhang L, Mehanna Y, Crick C, Poole R
Langmuir. 2022; 38(39):11873-11881.
PMID: 36125335
PMC: 9536016.
DOI: 10.1021/acs.langmuir.2c01323.
Tailored Uniaxial Alignment of Nanowires Based on Off-Center Spin-Coating for Flexible and Transparent Field-Effect Transistors.
Lee G, Kim H, Lee S, Kim D, Lee E, Lee S
Nanomaterials (Basel). 2022; 12(7).
PMID: 35407233
PMC: 9000857.
DOI: 10.3390/nano12071116.
Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation.
Song J, Liu N, Li J, Cao Y, Cao H
Nanomaterials (Basel). 2022; 12(5).
PMID: 35269248
PMC: 8912305.
DOI: 10.3390/nano12050761.
Optical Manipulation of Liquids by Thermal Marangoni Flow along the Air-Water Interfaces of a Superhydrophobic Surface.
Gao A, Butt H, Steffen W, Schonecker C
Langmuir. 2021; 37(29):8677-8686.
PMID: 34256567
PMC: 8397335.
DOI: 10.1021/acs.langmuir.1c00539.
Robust mold fabricated by femtosecond laser pulses for continuous thermal imprinting of superhydrophobic surfaces.
Zhan Z, Garcell E, Guo C
Mater Res Express. 2021; 6(7):075011.
PMID: 33384877
PMC: 7734387.
DOI: 10.1088/2053-1591/ab10c6.
Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion.
Guo D, Li C, Chang L, Jau H, Lo W, Lin W
Polymers (Basel). 2020; 12(12).
PMID: 33322682
PMC: 7763520.
DOI: 10.3390/polym12122968.
A theory for the slip and drag of superhydrophobic surfaces with surfactant.
Landel J, Peaudecerf F, Temprano-Coleto F, Gibou F, Goldstein R, Luzzatto-Fegiz P
J Fluid Mech. 2019; 883.
PMID: 31806916
PMC: 6894944.
DOI: 10.1017/jfm.2019.857.
Experimental explanation of the formation mechanism of surface mound-structures by femtosecond laser on polycrystalline NiNb.
Peng E, Tsubaki A, Zuhlke C, Wang M, Bell R, Lucis M
Appl Phys Lett. 2018; 108(3).
PMID: 30416199
PMC: 6225069.
DOI: 10.1063/1.4939983.
Laminar flow drag reduction on soft porous media.
Mirbod P, Wu Z, Ahmadi G
Sci Rep. 2017; 7(1):17263.
PMID: 29222460
PMC: 5722956.
DOI: 10.1038/s41598-017-17141-3.
Water and Blood Repellent Flexible Tubes.
Hoshian S, Kankuri E, Ras R, Franssila S, Jokinen V
Sci Rep. 2017; 7(1):16019.
PMID: 29167540
PMC: 5700071.
DOI: 10.1038/s41598-017-16369-3.
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju J, Yao X, Hou X, Liu Q, Zhang Y, Khademhosseini A
J Mater Chem A Mater. 2017; 5(31):16273-16280.
PMID: 29062483
PMC: 5650104.
DOI: 10.1039/C6TA11133E.
Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
Peaudecerf F, Landel J, Goldstein R, Luzzatto-Fegiz P
Proc Natl Acad Sci U S A. 2017; 114(28):7254-7259.
PMID: 28655848
PMC: 5514732.
DOI: 10.1073/pnas.1702469114.
Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity.
Hokmabad B, Ghaemi S
Sci Rep. 2017; 7:41448.
PMID: 28128296
PMC: 5269735.
DOI: 10.1038/srep41448.
Superhydrophobic materials for biomedical applications.
Falde E, Yohe S, Colson Y, Grinstaff M
Biomaterials. 2016; 104:87-103.
PMID: 27449946
PMC: 5136454.
DOI: 10.1016/j.biomaterials.2016.06.050.