Li G, Cao X, Tumukunde E, Zeng Q, Wang S
Elife. 2024; 12.
PMID: 38990939
PMC: 11239180.
DOI: 10.7554/eLife.89478.
Foltman M, Sanchez-Diaz A
Int J Mol Sci. 2023; 24(21).
PMID: 37958727
PMC: 10647266.
DOI: 10.3390/ijms242115745.
Chen A, Liu N, Xu C, Wu S, Liu C, Qi H
Mol Plant Pathol. 2023; 24(9):1139-1153.
PMID: 37278525
PMC: 10423325.
DOI: 10.1111/mpp.13359.
Tate J, Rai R, Cooper T
Yeast. 2023; 40(8):318-332.
PMID: 36960709
PMC: 10518031.
DOI: 10.1002/yea.3849.
Wang Y, Zheng X, Li G, Wang X
Microorganisms. 2023; 11(1).
PMID: 36677510
PMC: 9864104.
DOI: 10.3390/microorganisms11010218.
Effects of abolishing Whi2 on the proteome and nitrogen catabolite repression-sensitive protein production.
Tate J, Marsikova J, Vachova L, Palkova Z, Cooper T
G3 (Bethesda). 2022; 12(3).
PMID: 35100365
PMC: 9210300.
DOI: 10.1093/g3journal/jkab432.
Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis.
Schlarmann P, Ikeda A, Funato K
Membranes (Basel). 2021; 11(12).
PMID: 34940472
PMC: 8707754.
DOI: 10.3390/membranes11120971.
N- and C-terminal Gln3-Tor1 interaction sites: one acting negatively and the other positively to regulate nuclear Gln3 localization.
Tate J, Rai R, De Virgilio C, Cooper T
Genetics. 2021; 217(4).
PMID: 33857304
PMC: 8049557.
DOI: 10.1093/genetics/iyab017.
A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism.
Osterberg L, Domenzain I, Munch J, Nielsen J, Hohmann S, Cvijovic M
PLoS Comput Biol. 2021; 17(4):e1008891.
PMID: 33836000
PMC: 8059808.
DOI: 10.1371/journal.pcbi.1008891.
Protein Phosphatases in G1 Regulation.
Martin R, Stonyte V, Lopez-Aviles S
Int J Mol Sci. 2020; 21(2).
PMID: 31936296
PMC: 7013402.
DOI: 10.3390/ijms21020395.
Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
Tate J, Tolley E, Cooper T
Genetics. 2019; 212(4):1205-1225.
PMID: 31213504
PMC: 6707456.
DOI: 10.1534/genetics.119.302371.
MoPpe1 partners with MoSap1 to mediate TOR and cell wall integrity signalling in growth and pathogenicity of the rice blast fungus Magnaporthe oryzae.
Qian B, Liu X, Jia J, Cai Y, Chen C, Zhang H
Environ Microbiol. 2018; 20(11):3964-3979.
PMID: 30246284
PMC: 6790007.
DOI: 10.1111/1462-2920.14421.
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae.
Zhang W, Du G, Zhou J, Chen J
Microbiol Mol Biol Rev. 2018; 82(1).
PMID: 29436478
PMC: 5813884.
DOI: 10.1128/MMBR.00040-17.
Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress.
Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman L
Mol Biol Cell. 2017; 29(4):510-522.
PMID: 29237820
PMC: 6014174.
DOI: 10.1091/mbc.E17-09-0553.
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in .
Tate J, Rai R, Cooper T
Genetics. 2017; 208(1):207-227.
PMID: 29113979
PMC: 5753859.
DOI: 10.1534/genetics.117.300457.
Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae.
Li J, Yan G, Liu S, Jiang T, Zhong M, Yuan W
Mol Microbiol. 2017; 106(6):938-948.
PMID: 28976047
PMC: 5720920.
DOI: 10.1111/mmi.13858.
General Control Nonderepressible 2 (GCN2) Kinase Inhibits Target of Rapamycin Complex 1 in Response to Amino Acid Starvation in .
Yuan W, Guo S, Gao J, Zhong M, Yan G, Wu W
J Biol Chem. 2017; 292(7):2660-2669.
PMID: 28057755
PMC: 5314164.
DOI: 10.1074/jbc.M116.772194.
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
Tate J, Buford D, Rai R, Cooper T
Genetics. 2016; 205(2):633-655.
PMID: 28007891
PMC: 5289842.
DOI: 10.1534/genetics.116.195800.
Multiple Targets on the Gln3 Transcription Activator Are Cumulatively Required for Control of Its Cytoplasmic Sequestration.
Rai R, Tate J, Cooper T
G3 (Bethesda). 2016; 6(5):1391-408.
PMID: 26976442
PMC: 4856090.
DOI: 10.1534/g3.116.027615.
Vesicular Trafficking Systems Impact TORC1-Controlled Transcriptional Programs in Saccharomyces cerevisiae.
Kingsbury J, Cardenas M
G3 (Bethesda). 2016; 6(3):641-52.
PMID: 26739646
PMC: 4777127.
DOI: 10.1534/g3.115.023911.