» Articles » PMID: 16859285

On Outliers and Activity Cliffs--why QSAR Often Disappoints

Overview
Date 2006 Jul 25
PMID 16859285
Citations 167
Authors
Affiliations
Soon will be listed here.
Citing Articles

A data-driven generative strategy to avoid reward hacking in multi-objective molecular design.

Yoshizawa T, Ishida S, Sato T, Ohta M, Honma T, Terayama K Nat Commun. 2025; 16(1):2409.

PMID: 40069140 PMC: 11897179. DOI: 10.1038/s41467-025-57582-3.


Predicting and Explaining Yields with Machine Learning for Carboxylated Azoles and Beyond.

Janssen K, Proppe J J Chem Inf Model. 2025; 65(4):1862-1872.

PMID: 39916507 PMC: 11863374. DOI: 10.1021/acs.jcim.4c02336.


Activity Cliff-Informed Contrastive Learning for Molecular Property Prediction.

Shen W, Cui C, Su X, Zhang Z, Velez-Arce A, Wang J Res Sq. 2024; .

PMID: 39678335 PMC: 11643338. DOI: 10.21203/rs.3.rs-2988283/v2.


The Application of Methods for Prediction of Blood-Brain Barrier Permeability of Small Molecule PET Tracers.

Steen E, Vugts D, Windhorst A Front Nucl Med. 2024; 2:853475.

PMID: 39354992 PMC: 11440968. DOI: 10.3389/fnume.2022.853475.


Do Molecular Fingerprints Identify Diverse Active Drugs in Large-Scale Virtual Screening? (No).

Venkatraman V, Gaiser J, Demekas D, Roy A, Xiong R, Wheeler T Pharmaceuticals (Basel). 2024; 17(8).

PMID: 39204097 PMC: 11356940. DOI: 10.3390/ph17080992.