» Articles » PMID: 16844761

Low Flagellar Motor Torque and High Swimming Efficiency of Caulobacter Crescentus Swarmer Cells

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2006 Jul 18
PMID 16844761
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

We determined the torque of the flagellar motor of Caulobacter crescentus for different motor rotation rates by measuring the rotation rate and swimming speed of the cell body and found it to be remarkably different from that of other bacteria, such as Escherichia coli and Vibrio alginolyticus. The average stall torque of the Caulobacter flagellar motor was approximately 350 pN nm, much smaller than the values of the other bacteria measured. Furthermore, the torque of the motor remained constant in the range of rotation rates up to those of freely swimming cells. In contrast, the torque of a freely swimming cell for V. alginolyticus is typically approximately 20% of the stall torque. We derive from these results that the C. crescentus swarmer cells swim more efficiently than both E. coli and V. alginolyticus. Our findings suggest that C. crescentus is optimally adapted to low nutrient aquatic environments.

Citing Articles

Torque-speed relationship of the flagellar motor with dual-stator systems in .

Wu H, Wu Z, Tian M, Zhang R, Yuan J mBio. 2024; 15(12):e0074524.

PMID: 39475228 PMC: 11633141. DOI: 10.1128/mbio.00745-24.


Decoding the hydrodynamic properties of microscale helical propellers from Brownian fluctuations.

Djutanta F, Brown P, Nainggolan B, Coullomb A, Radhakrishnan S, Sentosa J Proc Natl Acad Sci U S A. 2023; 120(22):e2220033120.

PMID: 37235635 PMC: 10235983. DOI: 10.1073/pnas.2220033120.


Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.

Barrows J, Goley E J Bacteriol. 2023; 205(2):e0038422.

PMID: 36715542 PMC: 9945503. DOI: 10.1128/jb.00384-22.


A one-dimensional three-state run-and-tumble model with a 'cell cycle'.

Breoni D, Schwarzendahl F, Blossey R, Lowen H Eur Phys J E Soft Matter. 2022; 45(10):83.

PMID: 36258055 PMC: 9579107. DOI: 10.1140/epje/s10189-022-00238-7.


Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation.

Sauter N, Sangermani M, Hug I, Jenal U, Pfohl T Commun Biol. 2022; 5(1):1093.

PMID: 36241769 PMC: 9568603. DOI: 10.1038/s42003-022-04026-z.


References
1.
Koch A . Oligotrophs versus copiotrophs. Bioessays. 2001; 23(7):657-61. DOI: 10.1002/bies.1091. View

2.
Manson M, Tedesco P, Berg H, Harold F, van der Drift C . A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A. 1977; 74(7):3060-4. PMC: 431412. DOI: 10.1073/pnas.74.7.3060. View

3.
Li G, Smith C, Brun Y, Tang J . The elastic properties of the caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J Bacteriol. 2004; 187(1):257-65. PMC: 538810. DOI: 10.1128/JB.187.1.257-265.2005. View

4.
POINDEXTER J . The caulobacters: ubiquitous unusual bacteria. Microbiol Rev. 1981; 45(1):123-79. PMC: 281501. DOI: 10.1128/mr.45.1.123-179.1981. View

5.
Sowa Y, Rowe A, Leake M, Yakushi T, Homma M, Ishijima A . Direct observation of steps in rotation of the bacterial flagellar motor. Nature. 2005; 437(7060):916-9. DOI: 10.1038/nature04003. View