» Articles » PMID: 16779135

CiteSpace II: Visualization and Knowledge Discovery in Bibliographic Databases

Overview
Date 2006 Jun 17
PMID 16779135
Citations 439
Authors
Affiliations
Soon will be listed here.
Abstract

This article presents a description and case study of CiteSpace II, a Java application which supports visual exploration with knowledge discovery in bibliographic databases. Highly cited and pivotal documents, areas of specialization within a knowledge domain, and emergence of research topics are visually mapped through a progressive knowledge domain visualization approach to detecting and visualizing trends and patterns in scientific literature. The test case in this study is progressive knowledge domain visualization of the field of medical informatics. Datasets based on publications from twelve journals in the medical informatics field covering the time period from 1964-2004 were extracted from PubMed and Web of Science (WOS) and developed as testbeds for evaluation of the CiteSpace system. Two resulting document-term co-citation and MeSH term co-occurrence visualizations are qualitatively evaluated for identification of pivotal documents, areas of specialization, and research trends. Practical applications in bio-medical research settings are discussed.

Citing Articles

Therapeutic potential of triple-negative breast cancer immune checkpoint blockers: A 21-year bibliometric analysis.

Sun Z, Liu C, Yao Y, Gao C, Li H, Wang L Medicine (Baltimore). 2025; 104(10):e41739.

PMID: 40068043 PMC: 11903016. DOI: 10.1097/MD.0000000000041739.


Global trends and research hotspots in nanodrug delivery systems for breast cancer therapy: a bibliometric analysis (2013-2023).

Li Y, Liu P, Zhang B, Chen J, Yan Y Discov Oncol. 2025; 16(1):269.

PMID: 40047951 PMC: 11885776. DOI: 10.1007/s12672-025-02014-3.


Rare disease publishing trends worldwide and in China: A CiteSpace-based bibliometric study.

Kong Q, Fan C, Zhang Y, Yan X, Chen L, Kang Q Intractable Rare Dis Res. 2025; 14(1):1-13.

PMID: 40046029 PMC: 11878222. DOI: 10.5582/irdr.2024.01059.


A bibliometric study of rare diseases in English and Chinese databases from 1985 to 2024 based on CiteSpace.

Tian M, Wang S, Meng Z, Zhang X, Han J, Lu Y Intractable Rare Dis Res. 2025; 14(1):14-28.

PMID: 40046028 PMC: 11878225. DOI: 10.5582/irdr.2024.01062.


Global trends and emerging research in nanotechnology for esophageal cancer: a comprehensive bibliometric analysis.

Zuo C, Tian J Discov Oncol. 2025; 16(1):262.

PMID: 40029466 PMC: 11876481. DOI: 10.1007/s12672-025-02018-z.


References
1.
Babic A . Knowledge discovery for advanced clinical data management and analysis. Stud Health Technol Inform. 2000; 68:409-13. View

2.
Smyth P . Data mining: data analysis on a grand scale?. Stat Methods Med Res. 2000; 9(4):309-27. DOI: 10.1177/096228020000900402. View

3.
Price D . NETWORKS OF SCIENTIFIC PAPERS. Science. 1965; 149(3683):510-5. DOI: 10.1126/science.149.3683.510. View

4.
Chen C . Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004; 101 Suppl 1:5303-10. PMC: 387312. DOI: 10.1073/pnas.0307513100. View

5.
Morris T, McCain K . The structure of medical informatics journal literature. J Am Med Inform Assoc. 1998; 5(5):448-66. PMC: 61326. DOI: 10.1136/jamia.1998.0050448. View