What Makes the Cylinder-shaped N72 Cage Stable?
Overview
Authors
Affiliations
Recent theoretical studies have suggested that the stabilizing factors for large nitrogen cages tend to favor more five-membered rings, more three-membered rings, and cylindrical structures with large numbers of layers. One of the major issues in this study of the all-nitrogen molecule is the determination of what brings about the stabilizing factors. Herein, the cylinder-shaped molecule of N72 (D3d) has been studied in detail. The geometry and energies are examined at B3LYP/cc-pVDZ, and single-point energy calculations at MP2/cc-pVDZ are carried out for the purposes of determining relative thermodynamic stability. Natural bond order (NBO) analysis and atoms in molecules (AIM) analysis are applied to investigate the bonding properties of the cage molecule. The major result of this study is the identification of intramolecular interactions, whether it is at B3LYP/cc-pVDZ or at MP2/cc-pVDZ, as the dominant stabilizing factor for the large all-nitrogen cage. The length of the cylinder-shaped molecule is about 2.2 nm. N72 (D3d) might be one novel nanomaterial which is environment friendly, and as a beeline nanotube or a beeline "nano-bar", it is expected to impact a wide range of applications.
Mikhailov O Int J Mol Sci. 2022; 23(5).
PMID: 35269983 PMC: 8911370. DOI: 10.3390/ijms23052841.
He B, Zhou H ACS Omega. 2020; 5(20):11618-11628.
PMID: 32478252 PMC: 7254778. DOI: 10.1021/acsomega.0c00850.
Structural Properties of High-Energy NC Molecules: Cyclic Hexamers of NCN.
Ross N, Strout D Comput Theor Chem. 2016; 1074:194-197.
PMID: 26855881 PMC: 4741108. DOI: 10.1016/j.comptc.2015.10.016.
N22C2 versus N24: role of molecular curvature in determining isomer stability.
Jasper S, Hammond A, Thomas J, Kidd L, Strout D J Phys Chem A. 2011; 115(42):11915-8.
PMID: 21923113 PMC: 4654125. DOI: 10.1021/jp208280c.