Sendker F, Schlotthauer T, Mais C, Lo Y, Girbig M, Bohn S
Nat Commun. 2024; 15(1):10515.
PMID: 39627196
PMC: 11615384.
DOI: 10.1038/s41467-024-54408-6.
Sendker F, Schlotthauer T, Mais C, Lo Y, Girbig M, Bohn S
bioRxiv. 2024; .
PMID: 39005358
PMC: 11245102.
DOI: 10.1101/2024.07.05.602260.
Bonet-Aleta J, Alegre-Requena J, Martin-Martin J, Encinas-Gimenez M, Martin-Pardillos A, Martin-Duque P
Nano Lett. 2024; 24(14):4091-4100.
PMID: 38489158
PMC: 11010231.
DOI: 10.1021/acs.nanolett.3c04947.
Harrison S, Webb W, Rammu H, Lane N
Life (Basel). 2023; 13(5).
PMID: 37240822
PMC: 10221237.
DOI: 10.3390/life13051177.
Heyen S, Scholz-Bottcher B, Rabus R, Wilkes H
Anal Bioanal Chem. 2020; 412(27):7491-7503.
PMID: 32970177
PMC: 7533261.
DOI: 10.1007/s00216-020-02883-3.
Metabolism and decarboxylation of glycollate and serine in leaf peroxisomes.
Walton N, Butt V
Planta. 2013; 153(3):225-31.
PMID: 24276825
DOI: 10.1007/BF00383891.
Non-enzymic β-decarboxylation of aspartic acid.
Doctor V, Oro J
J Mol Evol. 2013; 1(4):326-33.
PMID: 24173493
DOI: 10.1007/BF01653961.
Production of tartrates by cyanide-mediated dimerization of glyoxylate: a potential abiotic pathway to the citric acid cycle.
Butch C, Cope E, Pollet P, Gelbaum L, Krishnamurthy R, Liotta C
J Am Chem Soc. 2013; 135(36):13440-5.
PMID: 23914725
PMC: 3777280.
DOI: 10.1021/ja405103r.
Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.
Pudlik A, Lolkema J
J Bacteriol. 2011; 193(16):4049-56.
PMID: 21665973
PMC: 3147662.
DOI: 10.1128/JB.05012-11.
Metabolism of acetoacetate in animal tissues. 2.
KREBS H, EGGLESTON L
Biochem J. 1948; 42(2):294-305.
PMID: 16748282
PMC: 1258670.
Metabolism of acetoacetate in animal tissues. 1.
KREBS H, EGGLESTON L
Biochem J. 1945; 39(5):408-19.
PMID: 16747930
PMC: 1258257.
A simple and accurate spectrophotometric assay for phosphoenolpyruvate carboxylase activity.
Meyer C, Rustin P, Wedding R
Plant Physiol. 1988; 86(2):325-8.
PMID: 16665904
PMC: 1054479.
DOI: 10.1104/pp.86.2.325.
Determination of NAD Malic Enzyme in Leaves of C(4) Plants : EFFECTS OF MALATE DEHYDROGENASE AND OTHER FACTORS.
Hatch M, Tsuzuki M, Edwards G
Plant Physiol. 1982; 69(2):483-91.
PMID: 16662234
PMC: 426235.
DOI: 10.1104/pp.69.2.483.
CO(2) Fixation, Glutamate Labeling, and the Krebs Cycle in Ribose-grown Hydrogenomonas facilis.
McFadden B, Kuehn G, Homann H
J Bacteriol. 1967; 93(3):879-85.
PMID: 16562153
PMC: 276531.
DOI: 10.1128/jb.93.3.879-885.1967.
Physiological Studies on Spore Germination, with Special Reference to Clostridium botulinum: III. Carbon Dioxide and Germination, with a Note on Carbon Dioxide and Aerobic Spores.
WYNNE E, FOSTER J
J Bacteriol. 1948; 55(3):331-9.
PMID: 16561463
PMC: 518448.
Glutamic-aspartic transaminase of Dolichos lablab: participation by iron as a cofactor.
PATWARDHAN M
Biochem J. 1960; 75:401-8.
PMID: 14430956
PMC: 1204438.
DOI: 10.1042/bj0750401.
Some properties of the malic enzyme of pigeon liver. 1. Conversion of malate into pyruvate.
Stickland R
Biochem J. 1959; 73:646-54.
PMID: 13834656
PMC: 1197115.
DOI: 10.1042/bj0730646.
Some properties of oxaloacetate-synthesizing enzyme.
Stickland R
Biochem J. 1959; 73:660-5.
PMID: 13834655
PMC: 1197117.
DOI: 10.1042/bj0730660.
A sensitive method for estimation of oxaloacetate.
KALNITSKY G, TAPLEY D
Biochem J. 1958; 70(1):28-34.
PMID: 13584296
PMC: 1196619.
DOI: 10.1042/bj0700028.
Enzyme systems in the mycobacteria. II. The malic dehydrogenase.
Goldman D
J Bacteriol. 1956; 72(3):401-5.
PMID: 13366936
PMC: 357920.
DOI: 10.1128/jb.72.3.401-405.1956.