» Articles » PMID: 16735178

A Statistical Framework for the Classification of Tensor Morphologies in Diffusion Tensor Images

Overview
Publisher Elsevier
Specialty Radiology
Date 2006 Jun 1
PMID 16735178
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Tractography algorithms for diffusion tensor (DT) images consecutively connect directions of maximal diffusion across neighboring DTs in order to reconstruct the 3-dimensional trajectories of white matter tracts in vivo in the human brain. The performance of these algorithms, however, is strongly influenced by the amount of noise in the images and by the presence of degenerate tensors-- i.e., tensors in which the direction of maximal diffusion is poorly defined. We propose a simple procedure for the classification of tensor morphologies that uses test statistics based on invariant measures of DTs, such as fractional anisotropy, while accounting for the effects of noise on tensor estimates. Examining DT images from seven human subjects, we demonstrate that this procedure validly classifies DTs at each voxel into standard types (nondegenerate DTs, as well as degenerate oblate, prolate or isotropic DTs), and we provide preliminary estimates for the prevalence and spatial distribution of degenerate tensors in these brains. We also show that the P values for test statistics are more sensitive tools for classifying tensor morphologies than are invariant measures of anisotropy alone.

Citing Articles

Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI.

Yu T, Zhang C, Alexander A, Davidson R Ann Appl Stat. 2015; 7(1):201-225.

PMID: 25558295 PMC: 4280843. DOI: 10.1214/12-aoas573.


Semiparametric Bayesian local functional models for diffusion tensor tract statistics.

Hua Z, Dunson D, Gilmore J, Styner M, Zhu H Neuroimage. 2012; 63(1):460-74.

PMID: 22732565 PMC: 3677778. DOI: 10.1016/j.neuroimage.2012.06.027.


FADTTS: functional analysis of diffusion tensor tract statistics.

Zhu H, Kong L, Li R, Styner M, Gerig G, Lin W Neuroimage. 2011; 56(3):1412-25.

PMID: 21335092 PMC: 3085665. DOI: 10.1016/j.neuroimage.2011.01.075.


FRATS: Functional Regression Analysis of DTI Tract Statistics.

Zhu H, Styner M, Tang N, Liu Z, Lin W, Gilmore J IEEE Trans Med Imaging. 2010; 29(4):1039-49.

PMID: 20335089 PMC: 2896997. DOI: 10.1109/TMI.2010.2040625.


Regression Models for Identifying Noise Sources in Magnetic Resonance Images.

Zhu H, Li Y, Ibrahim J, Shi X, An H, Chen Y J Am Stat Assoc. 2009; 104(486):623-637.

PMID: 19890478 PMC: 2771876. DOI: 10.1198/jasa.2009.0029.


References
1.
Xue R, van Zijl P, Crain B, Solaiyappan M, Mori S . In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med. 1999; 42(6):1123-7. DOI: 10.1002/(sici)1522-2594(199912)42:6<1123::aid-mrm17>3.0.co;2-h. View

2.
Poupon C, Clark C, Frouin V, Regis J, Bloch I, Le Bihan D . Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage. 2000; 12(2):184-95. DOI: 10.1006/nimg.2000.0607. View

3.
Martin K, Papadakis N, Huang C, Hall L, Carpenter T . The reduction of the sorting bias in the eigenvalues of the diffusion tensor. Magn Reson Imaging. 1999; 17(6):893-901. DOI: 10.1016/s0730-725x(99)00021-1. View

4.
Papadakis N, Xing D, Houston G, Smith J, Smith M, James M . A study of rotationally invariant and symmetric indices of diffusion anisotropy. Magn Reson Imaging. 1999; 17(6):881-92. DOI: 10.1016/s0730-725x(99)00029-6. View

5.
Wu Y, Field A, Chung M, Badie B, Alexander A . Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn Reson Med. 2004; 52(5):1146-55. DOI: 10.1002/mrm.20254. View