» Articles » PMID: 16724118

How Initiation Factors Tune the Rate of Initiation of Protein Synthesis in Bacteria

Overview
Journal EMBO J
Date 2006 May 26
PMID 16724118
Citations 67
Authors
Affiliations
Soon will be listed here.
Abstract

The kinetics of initiator transfer RNA (tRNA) interaction with the messenger RNA (mRNA)-programmed 30S subunit and the rate of 50S subunit docking to the 30S preinitiation complex were measured for different combinations of initiation factors in a cell-free Escherichia coli system for protein synthesis with components of high purity. The major results are summarized by a Michaelis-Menten scheme for initiation. All three initiation factors are required for maximal efficiency (kcat/KM) of initiation and for maximal in vivo rate of initiation at normal concentration of initiator tRNA. Spontaneous release of IF3 from the 30S preinitiation complex is required for subunit docking. The presence of initiator tRNA on the 30S subunit greatly increases the rate of 70S ribosome formation by increasing the rate of IF3 dissociation from the 30S subunit and the rate of 50S subunit docking to the IF3-free 30S preinitiation complex. The reasons why IF1 and IF3 are essential in E. coli are discussed in the light of the present observations.

Citing Articles

The translation inhibitors kasugamycin, edeine and GE81112 target distinct steps during 30S initiation complex formation.

Safdari H, Morici M, Sanchez-Castro A, Dallape A, Paternoga H, Giuliodori A Nat Commun. 2025; 16(1):2470.

PMID: 40075065 PMC: 11903750. DOI: 10.1038/s41467-025-57731-8.


Unveiling the translational dynamics of lychee (Litchi chinesis Sonn.) in response to cold stress.

Chen M, Dai S, Chen D, Chen H, Feng N, Zheng D BMC Genomics. 2024; 25(1):686.

PMID: 38992605 PMC: 11241792. DOI: 10.1186/s12864-024-10591-w.


Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers.

Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H Chem Rev. 2024; 124(10):6444-6500.

PMID: 38688034 PMC: 11122139. DOI: 10.1021/acs.chemrev.3c00894.


Dynamics of release factor recycling during translation termination in bacteria.

Prabhakar A, Pavlov M, Zhang J, Indrisiunaite G, Wang J, Lawson M Nucleic Acids Res. 2023; 51(11):5774-5790.

PMID: 37102635 PMC: 10287982. DOI: 10.1093/nar/gkad286.


Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria.

Parajuli N, Emmerich A, Mandava C, Pavlov M, Sanyal S Nat Commun. 2023; 14(1):918.

PMID: 36806263 PMC: 9938272. DOI: 10.1038/s41467-023-36528-7.


References
1.
Zucker F, Hershey J . Binding of Escherichia coli protein synthesis initiation factor IF1 to 30S ribosomal subunits measured by fluorescence polarization. Biochemistry. 1986; 25(12):3682-90. DOI: 10.1021/bi00360a031. View

2.
Risuleo G, GUALERZI C, Pon C . Specificity and properties of the destabilization, induced by initiation factor IF-3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur J Biochem. 1976; 67(2):603-13. DOI: 10.1111/j.1432-1033.1976.tb10726.x. View

3.
Antoun A, Pavlov M, Andersson K, Tenson T, Ehrenberg M . The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 2003; 22(20):5593-601. PMC: 213779. DOI: 10.1093/emboj/cdg525. View

4.
Croitoru V, Bucheli-Witschel M, Hagg P, Abdulkarim F, Isaksson L . Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. Eur J Biochem. 2004; 271(3):534-44. DOI: 10.1046/j.1432-1033.2003.03954.x. View

5.
Cummings H, Hershey J . Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J Bacteriol. 1994; 176(1):198-205. PMC: 205031. DOI: 10.1128/jb.176.1.198-205.1994. View