» Articles » PMID: 16690988

Gene Expression Profile of Human Airway Epithelium Induced by Hyperoxia in Vivo

Overview
Date 2006 May 13
PMID 16690988
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Hyperoxia leads to oxidative modification and damage of macromolecules in the respiratory tract with loss of biological functions. Given the lack of antioxidant gene induction with acute exposure to 100% oxygen, we hypothesized that clearance pathways for oxidatively modified proteins may be induced and serve in the immediate cellular response to preserve the epithelial layer. To test this, airway epithelial cells were obtained from individuals under ambient oxygen conditions and after breathing 100% oxygen for 12 h. Gene expression profiling identified induction of genes in the chaperone and proteasome-ubiquitin-conjugation pathways that together comprise an integrated cellular response to manage and degrade damaged proteins. Analyses also revealed gene expression changes associated with oxidoreductase function, cell cycle regulation, and ATP synthesis. Increased HSP70, protein ubiquitination, and intracellular ATP were validated in cells exposed to hyperoxia in vitro. Inhibition of proteasomal degradation revealed the importance of accelerated protein catabolism for energy production of cells exposed to hyperoxia. Thus, the human airway early response to hyperoxia relies predominantly upon induction of cytoprotective chaperones and the ubiquitin-proteasome-dependent protein degradation system to maintain airway homeostatic integrity.

Citing Articles

Constitutive transgenic α-Klotho overexpression enhances resilience to and recovery from murine acute lung injury.

Gagan J, Cao K, Zhang Y, Zhang J, Davidson T, Pastor J Am J Physiol Lung Cell Mol Physiol. 2021; 321(4):L736-L749.

PMID: 34346778 PMC: 8560398. DOI: 10.1152/ajplung.00629.2020.


Hyperoxia affects the lung tissue: A porcine histopathological and metabolite study using five hours of apneic oxygenation.

Magnusdottir S, Maltesen R, Haugaard Banch L, Baandrup U, Valbjorn H, Andreassen T Metabol Open. 2020; 4:100018.

PMID: 32812938 PMC: 7424812. DOI: 10.1016/j.metop.2019.100018.


Stretch-induced Expression of CYR61 Increases the Secretion of IL-8 in A549 Cells via the NF-κβ/lκβ Pathway.

Zhang Y, Guf P, Yao S, Yang D, Lv Y, Ding D Curr Med Sci. 2018; 38(4):672-678.

PMID: 30128877 DOI: 10.1007/s11596-018-1929-7.


Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model.

Shrestha A, Gopal V, Menon R, Hagan J, Huang S, Shivanna B Am J Physiol Lung Cell Mol Physiol. 2018; 315(5):L734-L741.

PMID: 30047283 PMC: 6295503. DOI: 10.1152/ajplung.00183.2018.


β-Naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice.

Lingappan K, Maturu P, Liang Y, Jiang W, Wang L, Moorthy B Toxicol Appl Pharmacol. 2017; 339:133-142.

PMID: 29180065 PMC: 5758404. DOI: 10.1016/j.taap.2017.11.017.


References
1.
Helt C, Staversky R, Lee Y, Bambara R, Keng P, OReilly M . The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2003; 286(3):L506-13. DOI: 10.1152/ajplung.00243.2003. View

2.
Cho H, Jedlicka A, Reddy S, Kensler T, Yamamoto M, Zhang L . Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol. 2002; 26(2):175-82. DOI: 10.1165/ajrcmb.26.2.4501. View

3.
Heffner J, Repine J . Pulmonary strategies of antioxidant defense. Am Rev Respir Dis. 1989; 140(2):531-54. DOI: 10.1164/ajrccm/140.2.531. View

4.
Zeeberg B, Feng W, Wang G, Wang M, Fojo A, Sunshine M . GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003; 4(4):R28. PMC: 154579. DOI: 10.1186/gb-2003-4-4-r28. View

5.
Carvalho C, de Paula Pinto Schettino G, Maranhao B, Bethlem E . Hyperoxia and lung disease. Curr Opin Pulm Med. 2000; 4(5):300-4. DOI: 10.1097/00063198-199809000-00010. View