» Articles » PMID: 16663400

Further Characterization on the Transport Property of Plasmalemma NADH Oxidation System in Isolated Corn Root Protoplasts

Overview
Journal Plant Physiol
Specialty Physiology
Date 1984 Feb 1
PMID 16663400
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Recent experiments show that exogenous NADH increases the O(2) consumption and uptake of inorganic ions into isolated corn (Zea mays L. Pioneer Hybrid 3320) root protoplasts (Lin 1982, Proc Natl Acad Sci USA 79: 3773-3776). A mild treatment of protoplasts with trypsin released most of the NADH oxidation system from the plasmalemma (Lin 1982 Plant Physiol 70: 326-328). Further studies on this system showed that exogenous NADH (1.5 millimolar) tripled the proton efflux from the protoplasts thus generating a greater electrochemical proton gradient across the plasmalemma. Trypsin also released ubiquinone (11.95 nanomoles per milligrams protein) but not flavin or cytochrome from the system. Kinetic analyses showed that 1.5 millimolar NADH quadrupled V(max) of the mechanism I (saturable) component of K(+) uptake, while K(m) was not affected. Diethylstibestrol and vanadate inhibited basal (ATPase-mediated) K(+) influx and H(+) efflux, while NADH-stimulated K(+) uptake was not or only slightly inhibited. p-Chloromercuribenzene-sulfonic acid, N,N'-dicyclohexylcarbodiimide, ethidium bromide, and oligomycin inhibited both ATPase- and NADH-mediated H(+) and K(+) fluxes. A combination of 10 millimolar fusicoccin and 1.5 millimolar NADH gave an 11-fold increase of K(+) influx and a more than 3-fold increase of H(+) efflux. It is concluded that a plasmalemma ATPase is not involved in the NADH-mediated ion transport mechanism. NADH oxidase is a -SH containing enzyme (protein) and the proton channel is an important element in this transport system. Fusicoccin synergistically stimulates the effect of NADH on K(+) uptake.

Citing Articles

Cation stimulation of the proton-translocating redox activity at the plasmalemma of Catharanthus roseus cells.

Marigo G, Belkoura M Plant Cell Rep. 2013; 4(6):311-4.

PMID: 24254070 DOI: 10.1007/BF00269886.


Use of an electrochemical technique to study plasmamembrane redox reactions in cultured cells of Daucus carota L.

Chalmers J, Coleman J, Walton N Plant Cell Rep. 2013; 3(6):243-6.

PMID: 24253577 DOI: 10.1007/BF00269303.


Proton translocation in corn coleoptiles: ATPase or redox chain?.

Bottger M, Bigdon M, Soll H Planta. 2013; 163(3):376-80.

PMID: 24249409 DOI: 10.1007/BF00395146.


The oxidation of extracellular NADH by sugarcane cells: Coupling to ferricyanide reduction, oxygen uptake and pH change.

Komor E, Thom M, Maretzki A Planta. 2013; 170(1):34-43.

PMID: 24232839 DOI: 10.1007/BF00392378.


Redox activity and peroxidase activity associated with the plasma membrane of guard-cell protoplasts.

Pantoja O, Willmer C Planta. 2013; 174(1):44-50.

PMID: 24221416 DOI: 10.1007/BF00394872.


References
1.
Husain M, MASSEY V . Reversible resolution of flavoproteins into apoproteins and fee flavins. Methods Enzymol. 1978; 53:429-37. DOI: 10.1016/s0076-6879(78)53047-4. View

2.
Sze H, Churchill K . Mg/KCl-ATPase of plant plasma membranes is an electrogenic pump. Proc Natl Acad Sci U S A. 1981; 78(9):5578-82. PMC: 348793. DOI: 10.1073/pnas.78.9.5578. View

3.
Lin W . Responses of corn root protoplasts to exogenous reduced nicotinamide adenine dinucleotide: Oxygen consumption, ion uptake, and membrane potential. Proc Natl Acad Sci U S A. 1982; 79(12):3773-6. PMC: 346509. DOI: 10.1073/pnas.79.12.3773. View

4.
Mitchell P . Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. Fed Proc. 1967; 26(5):1370-9. View

5.
Kroger A . Determination of contents and redox states of ubiquinone and menaquinone. Methods Enzymol. 1978; 53:579-91. DOI: 10.1016/s0076-6879(78)53059-0. View