» Articles » PMID: 16660361

Biosynthesis of (+)-Tartaric Acid from L-[4-C]Ascorbic Acid in Grape and Geranium

Overview
Journal Plant Physiol
Specialty Physiology
Date 1978 Apr 1
PMID 16660361
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The metabolic fate of l-[4-(14)C]ascorbic acid has been examined in the grape (Vitis labrusca L.) and lemon geranium (Pelargonium crispum L. L'Hér. cv. Prince Rupert) under conditions comparable to data from l-[1-(14)C]ascorbic acid and l-[6-(14)C]ascorbic acid experiments. In detached grape leaves and immature berries, l-[4-(14)C]ascorbic acid and l-[1-(14)C]ascorbic acid were equivalent precursors to carboxyl labeled (+)-tartaric acid. In geranium apices, l-[4-(14)C]ascorbic acid yielded internal labeled (+)-tartaric acid while l-[6-(14)C]ascorbic acid gave an equivalent conversion to carboxyl labeled (+)-tartaric acid. These findings clearly show that two distinct processes for the synthesis of (+)-tartaric acid from l-ascorbic acid exist in plants identified as (+)-tartaric acid accumulators. In grape leaves and immature berries, (+)-tartaric acid synthesis proceeds via preservation of a four-carbon fragment derived from carbons 1 through 4 of l-ascorbic acid while carbons 3 through 6 yield (+)-tartaric acid in geranium apices.

Citing Articles

Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines.

Burbidge C, Ford C, Melino V, Wong D, Jia Y, Jenkins C Front Plant Sci. 2021; 12:643024.

PMID: 33747023 PMC: 7970118. DOI: 10.3389/fpls.2021.643024.


Assignment of function to a domain of unknown function: DUF1537 is a new kinase family in catabolic pathways for acid sugars.

Zhang X, Carter M, Vetting M, San Francisco B, Zhao S, Al-Obaidi N Proc Natl Acad Sci U S A. 2016; 113(29):E4161-9.

PMID: 27402745 PMC: 4961189. DOI: 10.1073/pnas.1605546113.


Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.).

Holler S, Ueda Y, Wu L, Wang Y, Hajirezaei M, Ghaffari M Plant Mol Biol. 2015; 88(6):545-60.

PMID: 26129988 DOI: 10.1007/s11103-015-0341-y.


Biosynthesis and metabolism of L-ascorbic acid in virginia creeper (Parthenocissus quinquefolia L.).

Helsper J, Saito K, Loewus F Planta. 2013; 152(2):171-6.

PMID: 24302386 DOI: 10.1007/BF00391190.


Synthesis of l-(+)-Tartaric Acid from l-Ascorbic Acid via 5-Keto-d-Gluconic Acid in Grapes.

Saito K, Kasai Z Plant Physiol. 1984; 76(1):170-4.

PMID: 16663792 PMC: 1064250. DOI: 10.1104/pp.76.1.170.


References
1.
Nuss R, Loewus F . Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants. Plant Physiol. 1978; 61(4):590-2. PMC: 1091923. DOI: 10.1104/pp.61.4.590. View

2.
Kliewer W . Sugars and Organic Acids of Vitis vinifera. Plant Physiol. 1966; 41(6):923-31. PMC: 1086453. DOI: 10.1104/pp.41.6.923. View

3.
Yang J, Loewus F . Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants. Plant Physiol. 1975; 56(2):283-5. PMC: 541805. DOI: 10.1104/pp.56.2.283. View

4.
Wagner G, Loewus F . l-Ascorbic Acid Metabolism in Vitaceae: Conversion to (+)-Tartaric Acid and Hexoses. Plant Physiol. 1974; 54(5):784-7. PMC: 366603. DOI: 10.1104/pp.54.5.784. View

5.
TOLBERT B, Harkrader R, Johnson D, Joyce B . C-6 oxidation of ascorbic acid: a major metabolic process in animals. Biochem Biophys Res Commun. 1976; 71(4):1004-9. DOI: 10.1016/0006-291x(76)90754-3. View