» Articles » PMID: 16658641

Higher Plant Cell Membrane Resistance by a Single Intracellular Electrode Method

Overview
Journal Plant Physiol
Specialty Physiology
Date 1974 Jan 1
PMID 16658641
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

A single intracellular microelectrode technique has been adapted to measure membrane resistance in a higher plant cell. As a direct result of the convenience of this method, which allows relatively long term recordings on a single cell, it has been found that membrane resistance increases for about 30 minutes after cell impalement in Pisum sativum L. cv. Alaska root cortical cells, although cell potential is established at a constant value in less than 2 minutes. It is proposed that these observations imply a regulating feedback loop between electrogenic pump rates and membrane potential.

Citing Articles

Electrical evidence for rhythmic changes in the cotransport of sucrose and hydrogen ions in Samanea pulvini.

Racusen R, Galston A Planta. 2014; 135(1):57-62.

PMID: 24419893 DOI: 10.1007/BF00387976.


The interpretation of intracellular measurements of membrane potential, resistance, and coupling in cells of higher plants.

Goldsmith T, Goldsmith M Planta. 2014; 143(3):267-74.

PMID: 24408464 DOI: 10.1007/BF00391997.


The contribution of tonoplast and plasma membrane to the electrical properties of a higher-plant cell.

Goldsmith M, Cleland R Planta. 2014; 143(3):261-5.

PMID: 24408463 DOI: 10.1007/BF00391996.


Electrical membrane potential and resistance in photoautotrophic suspension cells of Chenopodium rubrum L.

Ohkawa T, Kohler K, Bentrup F Planta. 2013; 151(1):88-94.

PMID: 24301675 DOI: 10.1007/BF00384242.


Effects of external pH, fusicoccin and butyrate on the cytoplasmic pH in barley root tips measured by (31)P-nuclear magnetic resonance spectroscopy.

Reid R, Field L, Pitman M Planta. 2013; 166(3):341-7.

PMID: 24241516 DOI: 10.1007/BF00401171.


References
1.
Slayman C . Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J Gen Physiol. 1965; 49(1):93-116. PMC: 2195470. DOI: 10.1085/jgp.49.1.93. View

2.
Pierce W, Higinbotham N . Compartments and Fluxes of K, NA, and CL in Avena Coleoptile Cells. Plant Physiol. 1970; 46(5):666-73. PMC: 396658. DOI: 10.1104/pp.46.5.666. View

3.
Kitasato H . The influence of H+ on the membrane potential and ion fluxes of Nitella. J Gen Physiol. 1968; 52(1):60-87. PMC: 2225788. DOI: 10.1085/jgp.52.1.60. View

4.
Araki T, Otani T . Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955; 18(5):472-85. DOI: 10.1152/jn.1955.18.5.472. View

5.
Spanswick R . Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K + , Na + , light and temperature on the membrane potential and resistance. Biochim Biophys Acta. 1972; 288(1):73-89. DOI: 10.1016/0005-2736(72)90224-6. View