Tipu M, Sherif S
Front Plant Sci. 2024; 15:1475496.
PMID: 39574438
PMC: 11579711.
DOI: 10.3389/fpls.2024.1475496.
Mubarok S, Qonit M, Rahmat B, Budiarto R, Suminar E, Nuraini A
Front Plant Sci. 2023; 14:1079052.
PMID: 36778710
PMC: 9911886.
DOI: 10.3389/fpls.2023.1079052.
Vu T, Das S, Tran M, Hong J, Kim J
Front Genome Ed. 2021; 2:612137.
PMID: 34713235
PMC: 8525411.
DOI: 10.3389/fgeed.2020.612137.
Hewitt S, Dhingra A
Front Plant Sci. 2020; 11:543958.
PMID: 33193478
PMC: 7652990.
DOI: 10.3389/fpls.2020.543958.
DellAglio E, Dalvit I, Loubery S, Fitzpatrick T
BMC Plant Biol. 2019; 19(1):464.
PMID: 31684863
PMC: 6829848.
DOI: 10.1186/s12870-019-2071-9.
The role of phytochromes in regulating biosynthesis of sterol glycoalkaloid in eggplant leaves.
Wang C, Sulli M, Fu D
PLoS One. 2017; 12(12):e0189481.
PMID: 29236780
PMC: 5728552.
DOI: 10.1371/journal.pone.0189481.
Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.).
Minas I, Font I Forcada C, Dangl G, Gradziel T, Dandekar A, Crisosto C
Front Plant Sci. 2015; 6:316.
PMID: 26029222
PMC: 4428209.
DOI: 10.3389/fpls.2015.00316.
Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening.
Hoogstrate S, van Bussel L, Cristescu S, Cator E, Mariani C, Vriezen W
Front Plant Sci. 2014; 5:466.
PMID: 25278945
PMC: 4165129.
DOI: 10.3389/fpls.2014.00466.
The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant.
Moyle R, Koia J, Vrebalov J, Giovannoni J, Botella J
Plant Mol Biol. 2014; 86(4-5):395-407.
PMID: 25139231
DOI: 10.1007/s11103-014-0236-3.
Protein differences between fruits of rin, a non-ripening tomato mutant, and a normal variety.
Mizrahi Y, Dostal H, Cherry J
Planta. 2014; 130(2):223-4.
PMID: 24424603
DOI: 10.1007/BF00384424.
Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid.
Boller T, Herner R, Kende H
Planta. 2013; 145(3):293-303.
PMID: 24317737
DOI: 10.1007/BF00454455.
Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit.
Kende H, Boller T
Planta. 2013; 151(5):476-81.
PMID: 24302114
DOI: 10.1007/BF00386542.
Organization and expression of polygalacturonase and other ripening related genes in Ailsa Craig "Neverripe" and "Ripening inhibitor" tomato mutants.
Knapp J, Moureau P, Schuch W, Grierson D
Plant Mol Biol. 2013; 12(1):105-16.
PMID: 24272722
DOI: 10.1007/BF00017453.
Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato.
Barry C, Aldridge G, Herzog G, Ma Q, McQuinn R, Hirschberg J
Plant Physiol. 2012; 159(3):1086-98.
PMID: 22623517
PMC: 3387696.
DOI: 10.1104/pp.112.197483.
Transcriptome analysis of rin mutant fruit and in silico analysis of promoters of differentially regulated genes provides insight into LeMADS-RIN-regulated ethylene-dependent as well as ethylene-independent aspects of ripening in tomato.
Kumar R, Sharma M, Kapoor S, Tyagi A, Sharma A
Mol Genet Genomics. 2012; 287(3):189-203.
PMID: 22212279
DOI: 10.1007/s00438-011-0671-7.
GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato.
Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S, Masini L
Plant Cell. 2011; 23(12):4507-25.
PMID: 22180624
PMC: 3269880.
DOI: 10.1105/tpc.111.088732.
Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated.
Yokotani N, Nakano R, Imanishi S, Nagata M, Inaba A, Kubo Y
J Exp Bot. 2009; 60(12):3433-42.
PMID: 19605457
PMC: 2724697.
DOI: 10.1093/jxb/erp185.
Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.
Cantu D, Blanco-Ulate B, Yang L, Labavitch J, Bennett A, Powell A
Plant Physiol. 2009; 150(3):1434-49.
PMID: 19465579
PMC: 2705034.
DOI: 10.1104/pp.109.138701.
Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior.
Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor M, Nunes-Nesi A
Plant Physiol. 2006; 142(4):1380-96.
PMID: 17071647
PMC: 1676044.
DOI: 10.1104/pp.106.088534.
Acetaldehyde stimulation of net gluconeogenic carbon movement from applied malic Acid in tomato fruit pericarp tissue.
Halinska A, Frenkel C
Plant Physiol. 1991; 95(3):954-60.
PMID: 16668078
PMC: 1077630.
DOI: 10.1104/pp.95.3.954.