» Articles » PMID: 16657199

Regulation of Sulfate Uptake by Amino Acids in Cultured Tobacco Cells

Overview
Journal Plant Physiol
Specialty Physiology
Date 1969 Sep 1
PMID 16657199
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.

Citing Articles

Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition.

Farzadfar S, Knight J, Congreves K Plant Soil. 2021; 462(1-2):7-23.

PMID: 34720208 PMC: 8550315. DOI: 10.1007/s11104-021-04860-w.


Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in .

Yuan Z, Long W, Hu H, Liang T, Luo X, Hu Z Genes (Basel). 2021; 12(5).

PMID: 33922737 PMC: 8146379. DOI: 10.3390/genes12050634.


The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.

Chen Z, Zhang X, Li H, Liu H, Xia Y, Xun L Appl Environ Microbiol. 2018; 84(22).

PMID: 30217845 PMC: 6210100. DOI: 10.1128/AEM.01241-18.


Long-distance transport of sulfur in Nicotiana tabacum.

Rennenberg H, Schmitz K, Bergmann L Planta. 2013; 147(1):57-62.

PMID: 24310895 DOI: 10.1007/BF00384591.


Tubulin from cultured tobacco cells: isolation and identification based on similarities to brain tubulin.

Yadav N, Filner P Planta. 2013; 157(1):46-52.

PMID: 24263944 DOI: 10.1007/BF00394539.


References
1.
Debusk B, Debusk A . Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease. Biochim Biophys Acta. 1965; 104(1):139-50. DOI: 10.1016/0304-4165(65)90229-1. View

2.
POSTGATE J . Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965; 29(4):425-41. PMC: 441294. DOI: 10.1128/br.29.4.425-441.1965. View

3.
Filner P . Semi-conservative replication of DNA in a higher plant cell. Exp Cell Res. 1965; 39(1):33-9. DOI: 10.1016/0014-4827(65)90004-2. View

4.
LEINWEBER F, MONTY K . CYSTEINE BIOSYNTHESIS IN NEUROSPORA CRASSA. I. THE METABOLISM OF SULFITE, SULFIDE, AND CYSTEINESULFINIC ACID. J Biol Chem. 1965; 240:782-7. View

5.
Schwartzman L, Blair A, Segal S . A common renal transport system for lysine, ornithine, arginine and cysteine. Biochem Biophys Res Commun. 1966; 23(2):220-6. DOI: 10.1016/0006-291x(66)90531-6. View