Peng Y, Gu X, Zhou Q, Huang J, Liu Z, Zhou Y
Front Plant Sci. 2022; 13:1012741.
PMID: 36330263
PMC: 9623158.
DOI: 10.3389/fpls.2022.1012741.
Cai Y, Yin L, Wang J, Dong W, Gao H, Xu J
Int J Mol Sci. 2021; 22(21).
PMID: 34769493
PMC: 8584533.
DOI: 10.3390/ijms222112062.
Walker R, Bonghi C, Varotto S, Battistelli A, Burbidge C, Castellarin S
Int J Mol Sci. 2021; 22(15).
PMID: 34360556
PMC: 8345980.
DOI: 10.3390/ijms22157794.
Campbell J, Sarkhosh A, Habibi F, Gajjar P, Ismail A, Tsolova V
Foods. 2021; 10(5).
PMID: 34065684
PMC: 8156615.
DOI: 10.3390/foods10051101.
Burbidge C, Ford C, Melino V, Wong D, Jia Y, Jenkins C
Front Plant Sci. 2021; 12:643024.
PMID: 33747023
PMC: 7970118.
DOI: 10.3389/fpls.2021.643024.
Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism.
Roch L, Dai Z, Gomes E, Bernillon S, Wang J, Gibon Y
Front Plant Sci. 2019; 10:836.
PMID: 31354750
PMC: 6632546.
DOI: 10.3389/fpls.2019.00836.
SlSWEET1a is involved in glucose import to young leaves in tomato plants.
Ho L, Klemens P, Neuhaus H, Ko H, Hsieh S, Guo W
J Exp Bot. 2019; 70(12):3241-3254.
PMID: 30958535
PMC: 6598072.
DOI: 10.1093/jxb/erz154.
Lateral Transport of Organic and Inorganic Solutes.
Aubry E, Dinant S, Vilaine F, Bellini C, Le Hir R
Plants (Basel). 2019; 8(1).
PMID: 30650538
PMC: 6358943.
DOI: 10.3390/plants8010020.
Lateral movement out of the sieve tubes and its effect on the (14)C translocation profile in Helianthus seedlings.
Whittle C
Planta. 2014; 95(3):247-63.
PMID: 24497100
DOI: 10.1007/BF00385091.
Phloem transport of (14)C-labelled assimilates in Ricinus.
Hall S, Baker D, Milburn J
Planta. 2014; 100(3):200-7.
PMID: 24488193
DOI: 10.1007/BF00387036.
The chemical composition of Ricinus phloem exudate.
Hall S, Baker D
Planta. 2014; 106(2):131-40.
PMID: 24477954
DOI: 10.1007/BF00383992.
Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation.
Dai Z, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S
J Exp Bot. 2014; 65(16):4665-77.
PMID: 24477640
PMC: 4115254.
DOI: 10.1093/jxb/ert489.
Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit.
Dai Z, Leon C, Feil R, Lunn J, Delrot S, Gomes E
J Exp Bot. 2013; 64(5):1345-55.
PMID: 23364938
PMC: 3598422.
DOI: 10.1093/jxb/ers396.
Transport of sucrose, not hexose, in the phloem.
Liu D, Chao W, Turgeon R
J Exp Bot. 2012; 63(11):4315-20.
PMID: 22553289
PMC: 3398456.
DOI: 10.1093/jxb/ers127.
Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries.
Melino V, Soole K, Ford C
BMC Plant Biol. 2009; 9:145.
PMID: 19995454
PMC: 2797797.
DOI: 10.1186/1471-2229-9-145.
Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening.
Negri A, Prinsi B, Rossoni M, Failla O, Scienza A, Cocucci M
BMC Genomics. 2008; 9:378.
PMID: 18691399
PMC: 2529320.
DOI: 10.1186/1471-2164-9-378.
Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.
Deluc L, Grimplet J, Wheatley M, Tillett R, Quilici D, Osborne C
BMC Genomics. 2007; 8:429.
PMID: 18034876
PMC: 2220006.
DOI: 10.1186/1471-2164-8-429.
Amino Acids Translocated from Turgid and Water-stressed Barley Leaves: I. Phloem Exudation Studies.
Tully R, Hanson A
Plant Physiol. 1979; 64(3):460-6.
PMID: 16660988
PMC: 543113.
DOI: 10.1104/pp.64.3.460.
Conversion of labeled substrates to sugars, cell wall polysaccharides, and tartaric Acid in grape berries.
Saito K
Plant Physiol. 1978; 62(2):215-9.
PMID: 16660488
PMC: 1092092.
DOI: 10.1104/pp.62.2.215.
Long distance transport.
Zimmermann M
Plant Physiol. 1974; 54(4):472-9.
PMID: 16658911
PMC: 367436.
DOI: 10.1104/pp.54.4.472.