Hoang S, Shehada M, Karydis K, Brisk P, Grover W
Ann Biomed Eng. 2024; 53(1):207-216.
PMID: 39377956
DOI: 10.1007/s10439-024-03628-4.
Mika T, Kalnins M, Spalvins K
Biol Methods Protoc. 2024; 9(1):bpae049.
PMID: 39114747
PMC: 11303513.
DOI: 10.1093/biomethods/bpae049.
Sato T, Kaneko K, Hayakawa T, Suzuki H
Micromachines (Basel). 2023; 14(11).
PMID: 38004868
PMC: 10673574.
DOI: 10.3390/mi14112010.
Orabi M, Lo J
Gels. 2023; 9(10).
PMID: 37888363
PMC: 10606214.
DOI: 10.3390/gels9100790.
Gopinathan K, Mishra A, Mutlu B, Edd J, Toner M
Nature. 2023; 622(7984):735-741.
PMID: 37880436
PMC: 10600001.
DOI: 10.1038/s41586-023-06517-3.
Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators.
Ahmadianyazdi A, Miller I, Folch A
Lab Chip. 2023; 23(18):4019-4032.
PMID: 37584639
PMC: 10849085.
DOI: 10.1039/d3lc00529a.
Pneumatic computers for embedded control of microfluidics.
Ahrar S, Raje M, Lee I, Hui E
Sci Adv. 2023; 9(22):eadg0201.
PMID: 37267360
PMC: 10413662.
DOI: 10.1126/sciadv.adg0201.
The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform.
Dey P, Bradley T, Boymelgreen A
Sci Rep. 2023; 13(1):6370.
PMID: 37076493
PMC: 10115827.
DOI: 10.1038/s41598-023-32873-1.
Lab at home: a promising prospect for on-site chemical and biological analysis.
Pan J, Fan C, Zuo Z, Yuan Y, Wang H, Dong Z
Anal Bioanal Chem. 2022; 415(1):17-25.
PMID: 36334114
PMC: 9638225.
DOI: 10.1007/s00216-022-04392-x.
Phase-Optimized Peristaltic Pumping by Integrated Microfluidic Logic.
Werner E, Lam B, Hui E
Micromachines (Basel). 2022; 13(10).
PMID: 36296137
PMC: 9610095.
DOI: 10.3390/mi13101784.
Programmable soft valves for digital and analog control.
Decker C, Jiang H, Nemitz M, Root S, Rajappan A, Alvarez J
Proc Natl Acad Sci U S A. 2022; 119(40):e2205922119.
PMID: 36161907
PMC: 9546565.
DOI: 10.1073/pnas.2205922119.
Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding.
Jung W, Uddin M, Namkoong K, Chung W, Kim J, Shim J
RSC Adv. 2022; 10(47):28390-28396.
PMID: 35519138
PMC: 9055662.
DOI: 10.1039/d0ra03830j.
Multistage Digital-to-Analogue Chip Based on a Weighted Flow Resistance Network for Soft Actuators.
Zhou Z, Xu M, Zhu C, He G, Zhang K, Sun D
Micromachines (Basel). 2021; 12(9).
PMID: 34577660
PMC: 8465357.
DOI: 10.3390/mi12091016.
Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board.
Vollertsen A, de Boer D, Dekker S, Wesselink B, Haverkate R, Rho H
Microsyst Nanoeng. 2021; 6:107.
PMID: 34567716
PMC: 8433198.
DOI: 10.1038/s41378-020-00216-z.
A microfluidically controlled concave-convex membrane lens using an addressing operation system.
Yao S, Zhou Z, He G, Zhang K, Huang X, Qiu B
Microsyst Nanoeng. 2021; 6:34.
PMID: 34567648
PMC: 8433168.
DOI: 10.1038/s41378-020-0148-0.
Reconfigurable multi-component micromachines driven by optoelectronic tweezers.
Zhang S, Elsayed M, Peng R, Chen Y, Zhang Y, Peng J
Nat Commun. 2021; 12(1):5349.
PMID: 34504081
PMC: 8429428.
DOI: 10.1038/s41467-021-25582-8.
BactoSpin: Novel Technology for Rapid Bacteria Detection and Antibiotic Susceptibility Testing.
Shumeiko V, Hidas G, Nowogrodski C, Pinto Y, Gofrit O, Duvdevani M
Sensors (Basel). 2021; 21(17).
PMID: 34502797
PMC: 8434515.
DOI: 10.3390/s21175902.
CMOS-Inspired Complementary Fluidic Circuits for Soft Robots.
Song S, Joshi S, Paik J
Adv Sci (Weinh). 2021; 8(20):e2100924.
PMID: 34459157
PMC: 8529426.
DOI: 10.1002/advs.202100924.
A pneumatic random-access memory for controlling soft robots.
Hoang S, Karydis K, Brisk P, Grover W
PLoS One. 2021; 16(7):e0254524.
PMID: 34270580
PMC: 8284813.
DOI: 10.1371/journal.pone.0254524.
Synergizing microfluidics with soft robotics: A perspective on miniaturization and future directions.
Gao R, Ren C
Biomicrofluidics. 2021; 15(1):011302.
PMID: 33564346
PMC: 7861881.
DOI: 10.1063/5.0036991.