» Articles » PMID: 16648593

Genomic-assisted Prediction of Genetic Value with Semiparametric Procedures

Overview
Journal Genetics
Specialty Genetics
Date 2006 May 2
PMID 16648593
Citations 191
Authors
Affiliations
Soon will be listed here.
Abstract

Semiparametric procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are presented. The methods focus on the treatment of massive information provided by, e.g., single-nucleotide polymorphisms. It is argued that standard parametric methods for quantitative genetic analysis cannot handle the multiplicity of potential interactions arising in models with, e.g., hundreds of thousands of markers, and that most of the assumptions required for an orthogonal decomposition of variance are violated in artificial and natural populations. This makes nonparametric procedures attractive. Kernel regression and reproducing kernel Hilbert spaces regression procedures are embedded into standard mixed-effects linear models, retaining additive genetic effects under multivariate normality for operational reasons. Inferential procedures are presented, and some extensions are suggested. An example is presented, illustrating the potential of the methodology. Implementations can be carried out after modification of standard software developed by animal breeders for likelihood-based or Bayesian analysis.

Citing Articles

Genomic selection in pig breeding: comparative analysis of machine learning algorithms.

Su R, Lv J, Xue Y, Jiang S, Zhou L, Jiang L Genet Sel Evol. 2025; 57(1):13.

PMID: 40065232 PMC: 11892316. DOI: 10.1186/s12711-025-00957-3.


Leveraging historical trials to predict Fusarium head blight resistance in spring wheat breeding programs.

Brault C, Conley E, Green A, Glover K, Cook J, Gill H Plant Genome. 2025; 18(1):e20559.

PMID: 39912127 PMC: 11800066. DOI: 10.1002/tpg2.20559.


Phenotypic simulation for fruit-related traits in F progenies of chili peppers (Capsicum annuum) using genomic prediction based solely on parental information.

Kondo F, Kumanomido Y, DAndrea M, Palombo V, Ahmed N, Futatsuyama S Mol Genet Genomics. 2025; 300(1):15.

PMID: 39833360 DOI: 10.1007/s00438-024-02224-4.


Genome-wide association analysis of flowering date in a collection of cultivated olive tree.

Aqbouch L, Abou-Saaid O, Sarah G, Zunino L, Segura V, Mournet P Hortic Res. 2025; 12(1):uhae265.

PMID: 39802732 PMC: 11718396. DOI: 10.1093/hr/uhae265.


Optimizing drought tolerance in cassava through genomic selection.

da Costa W, Bandeira E Souza M, Azevedo C, Nascimento M, Morgante C, Borel J Front Plant Sci. 2024; 15:1483340.

PMID: 39737377 PMC: 11683140. DOI: 10.3389/fpls.2024.1483340.


References
1.
Ter Braak C, Boer M, Bink M . Extending Xu's Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics. 2005; 170(3):1435-8. PMC: 1451196. DOI: 10.1534/genetics.105.040469. View

2.
Yi N, George V, Allison D . Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics. 2003; 164(3):1129-38. PMC: 1462611. DOI: 10.1093/genetics/164.3.1129. View

3.
Zhang Y, Xu S . A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity (Edinb). 2005; 95(1):96-104. DOI: 10.1038/sj.hdy.6800702. View

4.
Gianola D, Foulley J . Sire evaluation for ordered categorical data with a threshold model. Genet Sel Evol (1983). 2012; 15(2):201-24. PMC: 2714596. DOI: 10.1186/1297-9686-15-2-201. View

5.
Wang H, Zhang Y, Li X, Masinde G, Mohan S, Baylink D . Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics. 2005; 170(1):465-80. PMC: 1449727. DOI: 10.1534/genetics.104.039354. View