» Articles » PMID: 16625214

Multifactor Dimensionality Reduction Reveals Gene-gene Interactions Associated with Multiple Sclerosis Susceptibility in African Americans

Overview
Journal Genes Immun
Date 2006 Apr 21
PMID 16625214
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Multiple sclerosis (MS) is a common disease of the central nervous system characterized by inflammation, myelin loss, gliosis, varying degrees of axonal pathology, and progressive neurological dysfunction. Multiple sclerosis exhibits many of the characteristics that distinguish complex genetic disorders including polygenic inheritance and environmental exposure risks. Here, we used a highly efficient multilocus genotyping assay representing variation in 34 genes associated with inflammatory pathways to explore gene-gene interactions and disease susceptibility in a well-characterized African-American case-control MS data set. We applied the multifactor dimensionality reduction (MDR) test to detect epistasis, and identified single-IL4R(Q576R)- and three-IL4R(Q576R), IL5RA(-80), CD14(-260)- locus association models that predict MS risk with 75-76% accuracy (P<0.01). These results demonstrate the importance of exploring both main effects and gene-gene interactions in the study of complex diseases.

Citing Articles

A Framework for Efficient N-Way Interaction Testing in Case/Control Studies With Categorical Data.

Aristodimou A, Antoniades A, Dardiotis E, Loizidou E, Spyrou G, Votsi C IEEE Open J Eng Med Biol. 2022; 2:256-262.

PMID: 35402966 PMC: 8901013. DOI: 10.1109/OJEMB.2021.3100416.


Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures.

Ringheim G, Wampole M, Oberoi K Front Immunol. 2021; 12:662223.

PMID: 34803999 PMC: 8595937. DOI: 10.3389/fimmu.2021.662223.


Association of , and Genes Polymorphisms With the Calcium Urolithiasis Development in Russian Population.

Litvinova M, Khafizov K, Korchagin V, Speranskaya A, Asanov A, Matsvay A Front Genet. 2021; 12:621049.

PMID: 34054913 PMC: 8153711. DOI: 10.3389/fgene.2021.621049.


Mining Complex Genetic Patterns Conferring Multiple Sclerosis Risk.

Briggs F, Sept C Int J Environ Res Public Health. 2021; 18(5).

PMID: 33802599 PMC: 7967327. DOI: 10.3390/ijerph18052518.


Network graph analysis of gene-gene interactions in genome-wide association study data.

Lee S, Kwon M, Park T Genomics Inform. 2013; 10(4):256-62.

PMID: 23346039 PMC: 3543927. DOI: 10.5808/GI.2012.10.4.256.


References
1.
Nelms K, Keegan A, Zamorano J, Ryan J, Paul W . The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999; 17:701-38. DOI: 10.1146/annurev.immunol.17.1.701. View

2.
Wallin M, Page W, Kurtzke J . Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol. 2004; 55(1):65-71. DOI: 10.1002/ana.10788. View

3.
Lincoln M, Montpetit A, Cader M, Saarela J, Dyment D, Tiislar M . A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet. 2005; 37(10):1108-12. DOI: 10.1038/ng1647. View

4.
Sawcer S, Ban M, Maranian M, Yeo T, Compston A, Kirby A . A high-density screen for linkage in multiple sclerosis. Am J Hum Genet. 2005; 77(3):454-67. PMC: 1226210. DOI: 10.1086/444547. View

5.
Sandford A, Chagani T, Zhu S, Weir T, Bai T, Spinelli J . Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol. 2000; 106(1 Pt 1):135-40. DOI: 10.1067/mai.2000.107926. View