» Articles » PMID: 16605736

Control of Electrical Alternans in Canine Cardiac Purkinje Fibers

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2006 Apr 12
PMID 16605736
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Alternation in the duration of consecutive cardiac action potentials (electrical alternans) may precipitate conduction block and the onset of arrhythmias. Consequently, suppression of alternans using properly timed premature stimuli may be antiarrhythmic. To determine the extent to which alternans control can be achieved in cardiac tissue, isolated canine Purkinje fibers were paced from one end using a feedback control method. Spatially uniform control of alternans was possible when alternans amplitude was small. However, control became attenuated spatially as alternans amplitude increased. The amplitude variation along the cable was well described by a theoretically expected standing wave profile that corresponds to the first quantized mode of the one-dimensional Helmholtz equation. These results confirm the wavelike nature of alternans and may have important implications for their control using electrical stimuli.

Citing Articles

Role of ephaptic coupling in discordant alternans domain sizes and action potential propagation in the heart.

Otani N, Figueroa E, Garrison J, Hewson M, Munoz L, Fenton F Phys Rev E. 2023; 107(5-1):054407.

PMID: 37329030 PMC: 10688036. DOI: 10.1103/PhysRevE.107.054407.


Ephaptic Coupling as a Resolution to the Paradox of Action Potential Wave Speed and Discordant Alternans Spatial Scales in the Heart.

Otani N, Figueroa E, Garrison J, Hewson M, Munoz L, Fenton F Phys Rev Lett. 2023; 130(21):218401.

PMID: 37295103 PMC: 10688031. DOI: 10.1103/PhysRevLett.130.218401.


A machine-learning approach for long-term prediction of experimental cardiac action potential time series using an autoencoder and echo state networks.

Shahi S, Fenton F, Cherry E Chaos. 2022; 32(6):063117.

PMID: 35778132 PMC: 9188460. DOI: 10.1063/5.0087812.


Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling.

Jian K, Li C, Hancox J, Zhang H Front Physiol. 2022; 13:877428.

PMID: 35547576 PMC: 9081695. DOI: 10.3389/fphys.2022.877428.


Long-Time Prediction of Arrhythmic Cardiac Action Potentials Using Recurrent Neural Networks and Reservoir Computing.

Shahi S, Marcotte C, Herndon C, Fenton F, Shiferaw Y, Cherry E Front Physiol. 2021; 12:734178.

PMID: 34646159 PMC: 8502981. DOI: 10.3389/fphys.2021.734178.


References
1.
Witkowski F, Leon L, Penkoske P, Giles W, Spano M, Ditto W . Spatiotemporal evolution of ventricular fibrillation. Nature. 1998; 392(6671):78-82. DOI: 10.1038/32170. View

2.
Garfinkel A, Spano M, Ditto W, Weiss J . Controlling cardiac chaos. Science. 1992; 257(5074):1230-5. DOI: 10.1126/science.1519060. View

3.
Sinha S, Pande A, Pandit R . Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. Phys Rev Lett. 2001; 86(16):3678-81. DOI: 10.1103/PhysRevLett.86.3678. View

4.
Christini D, Stein K, Markowitz S, Mittal S, Slotwiner D, Scheiner M . Nonlinear-dynamical arrhythmia control in humans. Proc Natl Acad Sci U S A. 2001; 98(10):5827-32. PMC: 33298. DOI: 10.1073/pnas.091553398. View

5.
Watanabe M, Fenton F, Evans S, Hastings H, Karma A . Mechanisms for discordant alternans. J Cardiovasc Electrophysiol. 2001; 12(2):196-206. DOI: 10.1046/j.1540-8167.2001.00196.x. View