Mattila J, Hietakangas V
Genetics. 2017; 207(4):1231-1253.
PMID: 29203701
PMC: 5714444.
DOI: 10.1534/genetics.117.199885.
Rodriguez-Viera L, Perera E, Montero-Alejo V, Perdomo-Morales R, Garcia-Galano T, Martinez-Rodriguez G
PeerJ. 2017; 5:e3975.
PMID: 29114440
PMC: 5672836.
DOI: 10.7717/peerj.3975.
Rodriguez-Viera L, Perera E, Martos-Sitcha J, Perdomo-Morales R, Casuso A, Montero-Alejo V
PLoS One. 2016; 11(7):e0158919.
PMID: 27391425
PMC: 4938498.
DOI: 10.1371/journal.pone.0158919.
Huang J, Jing X, Douglas A
Insect Biochem Mol Biol. 2015; 67:15-20.
PMID: 25982023
PMC: 4644519.
DOI: 10.1016/j.ibmb.2015.05.004.
Baysdorfer C, Vanderwoude W
Plant Physiol. 1988; 87(3):566-70.
PMID: 16666186
PMC: 1054799.
DOI: 10.1104/pp.87.3.566.
Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber.
Graham I, Denby K, Leaver C
Plant Cell. 1994; 6(5):761-772.
PMID: 12244257
PMC: 160474.
DOI: 10.1105/tpc.6.5.761.
FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae.
Goffrini P, Ficarelli A, Donnini C, Lodi T, Puglisi P, Ferrero I
Curr Genet. 1996; 29(4):316-26.
PMID: 8598052
Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster.
Magoulas C, Abukashawa S, Bally-Cuif L, Hickey D
J Mol Evol. 1993; 36(3):234-42.
PMID: 8483161
DOI: 10.1007/BF00160478.
A short 5'-flanking region mediates glucose repression of amylase gene expression in Drosophila melanogaster.
Magoulas C, Bally-Cuif L, Benkel B, Hickey D
Genetics. 1993; 134(2):507-15.
PMID: 8325486
PMC: 1205494.
DOI: 10.1093/genetics/134.2.507.
A Drosophila gene promoter is subject to glucose repression in yeast cells.
Hickey D, Benkel K, Fong Y, Benkel B
Proc Natl Acad Sci U S A. 1994; 91(23):11109-12.
PMID: 7526389
PMC: 45176.
DOI: 10.1073/pnas.91.23.11109.
Nucleotide sequence upstream of a glucose-repressible Drosophila gene.
Hickey D, Genest Y, Benkel B
Nucleic Acids Res. 1987; 15(17):7184.
PMID: 3498932
PMC: 306208.
DOI: 10.1093/nar/15.17.7184.
Molecular cloning of alpha-amylase genes from Drosophila melanogaster. III. An inversion at the Amy locus in an amylase-null strain.
Schwartz P, Doane W
Biochem Genet. 1989; 27(1-2):31-46.
PMID: 2496682
DOI: 10.1007/BF00563016.
DNA rearrangement causes multiple changes in gene expression at the amylase locus in Drosophila melanogaster.
Hickey D, Benkel B, Abukashawa S, Haus S
Biochem Genet. 1988; 26(11-12):757-68.
PMID: 2468332
DOI: 10.1007/BF02395521.
Dosage compensation and dietary glucose repression of larval amylase activity in Drosophila miranda.
Norman R, Doane W
Biochem Genet. 1990; 28(11-12):601-13.
PMID: 2085311
DOI: 10.1007/BF00553953.
The effect of carbohydrate sources on the level of amylase activity in Musca domestica.
McCommas S, Shornick L
Biochem Genet. 1990; 28(11-12):585-9.
PMID: 2085310
DOI: 10.1007/BF00553951.
Concerted evolution of duplicated protein-coding genes in Drosophila.
Hickey D, Bally-Cuif L, Abukashawa S, Payant V, Benkel B
Proc Natl Acad Sci U S A. 1991; 88(5):1611-5.
PMID: 1900365
PMC: 51074.
DOI: 10.1073/pnas.88.5.1611.
Molecular analysis of cis-regulatory sequences at the alpha-amylase locus in Drosophila melanogaster.
Hawley S, Doane W, Norman R
Biochem Genet. 1992; 30(5-6):257-77.
PMID: 1616481