» Articles » PMID: 16593703

Small-angle Neutron Scattering Studies of Chlorophyll Micelles: Models for Bacterial Antenna Chlorophyll

Overview
Specialty Science
Date 1986 Jun 1
PMID 16593703
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Micelles of hydrated chlorophyll a (P740), bacteriochlorophyll a (P865), bacteriochlorophyll c (P750), and pheophytin a prepared in organic media have been studied by small-angle neutron scattering to determine their shape, size, and mass per unit length. All of the micelles are hollow cylinders of well-defined size. The P740 and P750 cylinders are essentially monolayers of macrocycles crosslinked by water, probably in an arrangement similar to that of crystals of chlorophyll derivatives. The P865 micelle is more nearly a bilayer of macrocycles. We show that the curvature necessary to form cylinders probably results from intrinsic curvature of the five-coordinated chlorophyll macrocycle. Studies of P740 micelle formation and the disaggregating effects of another nucleophile (pyridine) are described. As the P750 micelles are nearly identical in size and optical spectra to the rod-shaped structures observed in chlorosomes, and the P865 micelles have optical properties very similar to the in vivo properties of the long-wavelength antenna of purple photosynthetic bacteria, we propose that features of the hydrated cylindrical micelles of these chlorophylls provide good models for antenna chlorophyll in photosynthetic bacteria.

Citing Articles

On "P750s" in cyanobacteria: A historical perspective.

Govindjee G, Bjorn L, Blankenship R Photosynthetica. 2025; 62(4):406-408.

PMID: 39811713 PMC: 11726166. DOI: 10.32615/ps.2024.042.


Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants.

Nagy G, Garab G Photosynth Res. 2020; 150(1-3):41-49.

PMID: 32488447 PMC: 8556207. DOI: 10.1007/s11120-020-00763-6.


Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates.

Ogi S, Grzeszkiewicz C, Wurthner F Chem Sci. 2018; 9(10):2768-2773.

PMID: 29732062 PMC: 5914135. DOI: 10.1039/c7sc03725b.


Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus.

Wang Y, Freund D, Magdaong N, Urban V, Frank H, Hegeman A Photosynth Res. 2014; 122(1):69-86.

PMID: 24880610 DOI: 10.1007/s11120-014-0017-5.


Green thoughts in a green shade.

Katz J Photosynth Res. 2014; 26(3):143-60.

PMID: 24420580 DOI: 10.1007/BF00033128.


References
1.
Katz J, Norris J, Shipman L, Thurnauer M, Wasielewski M . Chlorophyll function in the photosynthetic reaction center. Annu Rev Biophys Bioeng. 1978; 7:393-434. DOI: 10.1146/annurev.bb.07.060178.002141. View

2.
Worcester D . Structural origins of diamagnetic anisotropy in proteins. Proc Natl Acad Sci U S A. 1978; 75(11):5475-7. PMC: 392987. DOI: 10.1073/pnas.75.11.5475. View

3.
Kratky C, Dunitz J . Ordered aggregation states of chlorophyll a and some derivatives. J Mol Biol. 1977; 113(2):431-42. DOI: 10.1016/0022-2836(77)90151-6. View

4.
Cruden D, STANIER R . The characterization of chlorobium vesicles and membranes isolated from green bacteria. Arch Mikrobiol. 1970; 72(2):115-34. DOI: 10.1007/BF00409518. View

5.
Olson J . Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta. 1980; 594(1):33-51. DOI: 10.1016/0304-4173(80)90012-9. View