Shelton G, Minor K, Thomovsky S, Guo L, Friedenberg S, Cullen J
J Vet Intern Med. 2021; 36(1):279-284.
PMID: 34854126
PMC: 8783360.
DOI: 10.1111/jvim.16330.
Arreguin A, Colognato H
Front Mol Neurosci. 2020; 13:118.
PMID: 32792907
PMC: 7390928.
DOI: 10.3389/fnmol.2020.00118.
Catignas K, Frick L, Pellegatta M, Hurley E, Kolb Z, Addabbo K
Glia. 2020; 69(1):91-108.
PMID: 32744761
PMC: 8491627.
DOI: 10.1002/glia.23886.
Gawlik K, Durbeej M
Front Mol Neurosci. 2020; 13:59.
PMID: 32457577
PMC: 7188397.
DOI: 10.3389/fnmol.2020.00059.
Previtali S, Zambon A
Front Mol Neurosci. 2020; 13:60.
PMID: 32390798
PMC: 7190814.
DOI: 10.3389/fnmol.2020.00060.
Mouse models for muscular dystrophies: an overview.
van Putten M, Lloyd E, de Greef J, Raz V, Willmann R, Grounds M
Dis Model Mech. 2020; 13(2).
PMID: 32224495
PMC: 7044454.
DOI: 10.1242/dmm.043562.
Cellular rescue in a zebrafish model of congenital muscular dystrophy type 1A.
Hall T, Wood A, Ehrlich O, Li M, Sonntag C, Cole N
NPJ Regen Med. 2019; 4:21.
PMID: 31754462
PMC: 6858319.
DOI: 10.1038/s41536-019-0084-5.
Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy.
Nguyen Q, Lim K, Yokota T
Appl Clin Genet. 2019; 12:113-130.
PMID: 31308722
PMC: 6618038.
DOI: 10.2147/TACG.S187481.
Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies.
Yurchenco P, McKee K, Reinhard J, Ruegg M
Matrix Biol. 2017; 71-72:174-187.
PMID: 29191403
PMC: 5971131.
DOI: 10.1016/j.matbio.2017.11.009.
Laminin: loss-of-function studies.
Yao Y
Cell Mol Life Sci. 2016; 74(6):1095-1115.
PMID: 27696112
PMC: 11107706.
DOI: 10.1007/s00018-016-2381-0.
212th ENMC International Workshop: Animal models of congenital muscular dystrophies, Naarden, The Netherlands, 29-31 May 2015.
Saunier M, Bonnemann C, Durbeej M, Allamand V
Neuromuscul Disord. 2016; 26(3):252-9.
PMID: 26948708
PMC: 5210215.
DOI: 10.1016/j.nmd.2016.02.002.
Progressive Muscular Dystrophy.
Br Med J. 2010; 1(5294):1745-6.
PMID: 20789441
PMC: 1959037.
Biological role of dystroglycan in Schwann cell function and its implications in peripheral nervous system diseases.
Masaki T, Matsumura K
J Biomed Biotechnol. 2010; 2010:740403.
PMID: 20625412
PMC: 2896880.
DOI: 10.1155/2010/740403.
Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy.
Douglas D, Popko B
Neurochem Res. 2008; 34(1):124-37.
PMID: 18481175
PMC: 2759972.
DOI: 10.1007/s11064-008-9719-4.
Laminins in peripheral nerve development and muscular dystrophy.
Yu W, Yu H, Chen Z
Mol Neurobiol. 2007; 35(3):288-97.
PMID: 17917117
DOI: 10.1007/s12035-007-0026-x.
Biochemistry of dystrophic muscle. 2. Some enzyme changes in dystrophic mouse muscle.
PENNINGTON R
Biochem J. 1963; 88(1):64-8.
PMID: 16749029
PMC: 1203848.
DOI: 10.1042/bj0880064.
Understanding the importance of selenium and selenoproteins in muscle function.
Rederstorff M, Krol A, Lescure A
Cell Mol Life Sci. 2005; 63(1):52-9.
PMID: 16314926
PMC: 2792354.
DOI: 10.1007/s00018-005-5313-y.
Laminin {alpha}1 chain corrects male infertility caused by absence of laminin {alpha}2 chain.
Hager M, Gawlik K, Nystrom A, Sasaki T, Durbeej M
Am J Pathol. 2005; 167(3):823-33.
PMID: 16127160
PMC: 1698730.
DOI: 10.1016/s0002-9440(10)62054-8.
Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality.
Li Z, Shelton G, Engvall E
Am J Pathol. 2005; 166(2):491-7.
PMID: 15681832
PMC: 1602316.
DOI: 10.1016/S0002-9440(10)62271-7.
Abnormalities of muscle protein metabolism in mice with muscular dystrophy.
KRUH J, DREYFUS J, SCHAPIRA G, GEY Jr G
J Clin Invest. 1960; 39:1180-4.
PMID: 14412243
PMC: 441862.
DOI: 10.1172/JCI104132.