» Articles » PMID: 16566595

Aberrant Metabolites in Mouse Models of Congenital Blinding Diseases: Formation and Storage of Retinyl Esters

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2006 Mar 29
PMID 16566595
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Regeneration of the visual chromophore, 11-cis-retinal, is a critical step in restoring photoreceptors to their dark-adapted conditions. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and the retinal pigment epithelium (RPE). Disabling mutations in nearly all of the retinoid cycle genes are linked to human conditions that cause congenital or progressive defects in vision. Several mouse models with disrupted genes related to this cycle contain abnormal fatty acid retinyl ester levels in the RPE. To investigate the mechanisms of retinyl ester accumulation, we generated single or double knockout mice lacking retinoid cycle genes. All-trans-retinyl esters accumulated in mice lacking RPE65, but they are reduced in double knockout mice also lacking opsin, suggesting a connection between visual pigment regeneration and the retinoid cycle. Only Rdh5-deficient mice accumulate cis-retinyl esters, regardless of the simultaneous disruption of RPE65, opsin, and prRDH. 13-cis-Retinoids are produced at higher levels when the flow of retinoid through the cycle was increased, and these esters are stored in specific structures called retinosomes. Most importantly, retinylamine, a specific and effective inhibitor of the 11-cis-retinol formation, also inhibits the production of 13-cis-retinyl esters. The data presented here support the idea that 13-cis-retinyl esters are formed through an aberrant enzymatic isomerization process.

Citing Articles

An in silico toolbox for the prediction of the potential pathogenic effects of missense mutations in the dimeric region of RPE65.

Poli G, Demontis G, Sodi A, Saba A, Rizzo S, Macchia M J Enzyme Inhib Med Chem. 2023; 38(1):2162047.

PMID: 36629452 PMC: 9848331. DOI: 10.1080/14756366.2022.2162047.


Profile of Krzysztof Palczewski.

Ravindran S Proc Natl Acad Sci U S A. 2022; 119(45):e2215599119.

PMID: 36322722 PMC: 9659388. DOI: 10.1073/pnas.2215599119.


Retinoids in the visual cycle: role of the retinal G protein-coupled receptor.

Choi E, Daruwalla A, Suh S, Leinonen H, Palczewski K J Lipid Res. 2020; 62:100040.

PMID: 32493732 PMC: 7910522. DOI: 10.1194/jlr.TR120000850.


A spectral-domain optical coherence tomographic analysis of Rdh5-/- mice retina.

Xie Y, Gonome T, Yamauchi K, Maeda-Monai N, Tanabu R, Ishiguro S PLoS One. 2020; 15(4):e0231220.

PMID: 32271812 PMC: 7144952. DOI: 10.1371/journal.pone.0231220.


Photic generation of 11--retinal in bovine retinal pigment epithelium.

Zhang J, Choi E, Tworak A, Salom D, Leinonen H, Sander C J Biol Chem. 2019; 294(50):19137-19154.

PMID: 31694912 PMC: 6916499. DOI: 10.1074/jbc.RA119.011169.


References
1.
Driessen C, Winkens H, Hoffmann K, Kuhlmann L, Janssen B, Van Vugt A . Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters. Mol Cell Biol. 2000; 20(12):4275-87. PMC: 85795. DOI: 10.1128/MCB.20.12.4275-4287.2000. View

2.
Palczewski K . G protein-coupled receptor rhodopsin. Annu Rev Biochem. 2006; 75:743-67. PMC: 1560097. DOI: 10.1146/annurev.biochem.75.103004.142743. View

3.
Jang G, McBee J, ALEKSEEV A, Haeseleer F, Palczewski K . Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. J Biol Chem. 2000; 275(36):28128-38. PMC: 1435698. DOI: 10.1074/jbc.M004488200. View

4.
McBee J, Kuksa V, Alvarez R, de Lera A, Prezhdo O, Haeseleer F . Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry. 2000; 39(37):11370-80. PMC: 1408314. DOI: 10.1021/bi001061c. View

5.
Nakamura M, Hotta Y, Tanikawa A, Terasaki H, Miyake Y . A high association with cone dystrophy in Fundus albipunctatus caused by mutations of the RDH5 gene. Invest Ophthalmol Vis Sci. 2000; 41(12):3925-32. View