» Articles » PMID: 1656219

Chromatin Structure, Not DNA Sequence Specificity, is the Primary Determinant of Topoisomerase II Sites of Action in Vivo

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1991 Oct 1
PMID 1656219
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

In the studies reported here we have used topoisomerase II as a model system for analyzing the factors that determine the sites of action for DNA-binding proteins in vivo. To localize topoisomerase II sites in vivo we used an inhibitor of the purified enzyme, the antitumor drug VM-26. This drug stabilizes an intermediate in the catalytic cycle, the cleavable complex, and substantially stimulates DNA cleavage by topoisomerase II. We show that lysis of VM-26 treated tissue culture cells with sodium dodecyl sulfate induces highly specific double-strand breaks in genomic DNA, and we present evidence indicating that these double-strand breaks are generated by topoisomerase II. Using indirect end labeling to map the cleavage products, we have examined the in vivo sites of action of topoisomerase II in the 87A7 heat shock locus, the histone repeat, and a tRNA gene cluster at 90BC. Our analysis reveals that chromatin structure, not sequence specificity, is the primary determinant in topoisomerase II site selection in vivo. We suggest that chromatin organization may provide a general mechanism for generating specificity in a wide range of DNA-protein interactions in vivo.

Citing Articles

Repetitive Sequence Stability in Embryonic Stem Cells.

Shi G, Pang Q, Lin Z, Zhang X, Huang K Int J Mol Sci. 2024; 25(16).

PMID: 39201503 PMC: 11354519. DOI: 10.3390/ijms25168819.


Germline/soma distinction in embryos requires regulators of zygotic genome activation.

Colonnetta M, Schedl P, Deshpande G Elife. 2023; 12.

PMID: 36598809 PMC: 9812407. DOI: 10.7554/eLife.78188.


CLAMP regulates zygotic genome activation in Drosophila embryos.

Colonnetta M, Abrahante J, Schedl P, Gohl D, Deshpande G Genetics. 2021; 219(2).

PMID: 34849887 PMC: 8633140. DOI: 10.1093/genetics/iyab107.


Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays.

Lamarche B, Orazio N, Goben B, Meisenhelder J, You Z, Weitzman M DNA Repair (Amst). 2018; 74:80-90.

PMID: 30583959 PMC: 8057058. DOI: 10.1016/j.dnarep.2018.12.001.


DNA of a circular minichromosome linearized by restriction enzymes or other reagents is resistant to further cleavage: an influence of chromatin topology on the accessibility of DNA.

Kumala S, Hadj-Sahraoui Y, Rzeszowska-Wolny J, Hancock R Nucleic Acids Res. 2012; 40(19):9417-28.

PMID: 22848103 PMC: 3479189. DOI: 10.1093/nar/gks723.


References
1.
Cartwright I, Hertzberg R, Dervan P, Elgin S . Cleavage of chromatin with methidiumpropyl-EDTA . iron(II). Proc Natl Acad Sci U S A. 1983; 80(11):3213-7. PMC: 394010. DOI: 10.1073/pnas.80.11.3213. View

2.
WORCEL A, Gargiulo G, Jessee B, Udvardy A, Louis C, Schedl P . Chromatin fine structure of the histone gene complex of Drosophila melanogaster. Nucleic Acids Res. 1983; 11(2):421-39. PMC: 325723. DOI: 10.1093/nar/11.2.421. View

3.
Udvardy A, Schedl P, Sander M, Hsieh T . Novel partitioning of DNA cleavage sites for Drosophila topoisomerase II. Cell. 1985; 40(4):933-41. DOI: 10.1016/0092-8674(85)90353-8. View

4.
Udvardy A, Schedl P, Sander M, Hsieh T . Topoisomerase II cleavage in chromatin. J Mol Biol. 1986; 191(2):231-46. DOI: 10.1016/0022-2836(86)90260-3. View

5.
Rowe T, Wang J, Liu L . In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin. Mol Cell Biol. 1986; 6(4):985-92. PMC: 367606. DOI: 10.1128/mcb.6.4.985-992.1986. View