» Articles » PMID: 16551107

Dynamics of Proteins Encapsulated in Silica Sol-gel Glasses Studied with IR Vibrational Echo Spectroscopy

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2006 Mar 23
PMID 16551107
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Spectrally resolved infrared stimulated vibrational echo spectroscopy is used to measure the fast dynamics of heme-bound CO in carbonmonoxy-myoglobin (MbCO) and -hemoglobin (HbCO) embedded in silica sol-gel glasses. On the time scale of approximately 100 fs to several picoseconds, the vibrational dephasing of the heme-bound CO is measurably slower for both MbCO and HbCO relative to that of aqueous protein solutions. The fast structural dynamics of MbCO, as sensed by the heme-bound CO, are influenced more by the sol-gel environment than those of HbCO. Longer time scale structural dynamics (tens of picoseconds), as measured by the extent of spectral diffusion, are the same for both proteins encapsulated in sol-gel glasses compared to that in aqueous solutions. A comparison of the sol-gel experimental results to viscosity-dependent vibrational echo data taken on various mixtures of water and fructose shows that the sol-gel-encapsulated MbCO exhibits dynamics that are the equivalent of the protein in a solution that is nearly 20 times more viscous than bulk water. In contrast, the HbCO dephasing in the sol-gel reflects only a 2-fold increase in viscosity. Attempts to alter the encapsulating pore size by varying the molar ratio of silane precursor to water (R value) used to prepare the sol-gel glasses were found to have no effect on the fast or steady-state spectroscopic results. The vibrational echo data are discussed in the context of solvent confinement and protein-pore wall interactions to provide insights into the influence of a confined environment on the fast structural dynamics experienced by a biomolecule.

Citing Articles

Do Osmolytes Impact the Structure and Dynamics of Myoglobin?.

Kossowska D, Kwak K, Cho M Molecules. 2018; 23(12).

PMID: 30513982 PMC: 6321238. DOI: 10.3390/molecules23123189.


Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.

Harper-Leatherman A, Pacer E, Kosciuszek N J Vis Exp. 2016; (109):e53802.

PMID: 26967257 PMC: 4828205. DOI: 10.3791/53802.


Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water.

Dutta S, Rock W, Cook R, Kohen A, Cheatum C J Chem Phys. 2011; 135(5):055106.

PMID: 21823737 PMC: 3162616. DOI: 10.1063/1.3623418.


Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand.

Thielges M, Axup J, Wong D, Lee H, Chung J, Schultz P J Phys Chem B. 2011; 115(38):11294-304.

PMID: 21823631 PMC: 3261801. DOI: 10.1021/jp206986v.


Simulations of the confinement of ubiquitin in self-assembled reverse micelles.

Tian J, Garcia A J Chem Phys. 2011; 134(22):225101.

PMID: 21682536 PMC: 3133568. DOI: 10.1063/1.3592712.


References
1.
Merchant K, Noid W, Akiyama R, Finkelstein I, Goun A, McClain B . Myoglobin-CO substate structures and dynamics: multidimensional vibrational echoes and molecular dynamics simulations. J Am Chem Soc. 2003; 125(45):13804-18. PMC: 2435512. DOI: 10.1021/ja035654x. View

2.
Finkelstein I, McClain B, Fayer M . Fifth-order contributions to ultrafast spectrally resolved vibrational echoes: heme-CO proteins. J Chem Phys. 2004; 121(2):877-85. PMC: 2501118. DOI: 10.1063/1.1758940. View

3.
Shibayama N . Functional analysis of hemoglobin molecules locked in doubly liganded conformations. J Mol Biol. 1999; 285(4):1383-8. DOI: 10.1006/jmbi.1998.2407. View

4.
Bai , Fayer . Time scales and optical dephasing measurements: Investigation of dynamics in complex systems. Phys Rev B Condens Matter. 1989; 39(15):11066-11084. DOI: 10.1103/physrevb.39.11066. View

5.
Farrer R, Fourkas J . Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical kerr effect spectroscopy. Acc Chem Res. 2003; 36(8):605-12. DOI: 10.1021/ar0200302. View