» Articles » PMID: 16535254

A Combined Model for Growth and Subsequent Thermal Inactivation of Brochothrix Thermosphacta

Overview
Date 1996 Mar 1
PMID 16535254
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

A mathematical technique for integrating growth and thermal inactivation models of microorganisms into a smooth combined model that can be applied to circumstances under which the temperature gradually rises from growth to inactivation regions is described. For the death part of the model, a correction term is introduced to allow for additional resistance of the cells gained during slow heating. The model was validated with Brochothrix thermosphacta heated in broth at rising temperatures.

Citing Articles

Lethality Validation for Human Pathogenic on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering.

Mvuyekure A, Moreira R, Taylor T Microorganisms. 2023; 11(8).

PMID: 37630631 PMC: 10458040. DOI: 10.3390/microorganisms11082071.


Effects of osmotic stress on ATCC 7644: persistent cells and heat resistance.

Nalbone L, Sorrentino G, Giarratana F, Schiopu-Mariean A, Ziino G, Giuffrida A Ital J Food Saf. 2023; 12(1):10880.

PMID: 37064513 PMC: 10102965. DOI: 10.4081/ijfs.2023.10880.


Predicting the Simultaneous Oxidation of Ammonia, Nitrite, and m-cresol and Microbial Growth in a Sequencing Batch Reactor with a Kinetic Model Using Inhibition and Inactivation Effects.

Ben Youssef C, Zepeda A Appl Biochem Biotechnol. 2023; 195(6):3566-3584.

PMID: 36630048 DOI: 10.1007/s12010-022-04286-9.


The Inclusion of the Food Microstructural Influence in Predictive Microbiology: State-of-the-Art.

Verheyen D, Van Impe J Foods. 2021; 10(9).

PMID: 34574229 PMC: 8468028. DOI: 10.3390/foods10092119.


Predictive modelling of Lactobacillus casei KN291 survival in fermented soy beverage.

Zielinska D, Dorota Z, Kolozyn-Krajewska D, Danuta K, Goryl A, Antoni G J Microbiol. 2014; 52(2):169-78.

PMID: 24500482 DOI: 10.1007/s12275-014-3045-0.


References
1.
Cerf O . Tailing of survival curves of bacterial spores. J Appl Bacteriol. 1977; 42(1):1-19. DOI: 10.1111/j.1365-2672.1977.tb00665.x. View

2.
King Jr A, Bayne H, ALDERTON G . Nonlogarithmic death rate calculations for Byssochlamys fulva and other microorganisms. Appl Environ Microbiol. 1979; 37(3):596-600. PMC: 243260. DOI: 10.1128/aem.37.3.596-600.1979. View

3.
Van Impe J, Nicolai B, Martens T, De Baerdemaeker J, Vandewalle J . Dynamic mathematical model to predict microbial growth and inactivation during food processing. Appl Environ Microbiol. 1992; 58(9):2901-9. PMC: 183025. DOI: 10.1128/aem.58.9.2901-2909.1992. View

4.
Farber J, Brown B . Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl Environ Microbiol. 1990; 56(6):1584-7. PMC: 184475. DOI: 10.1128/aem.56.6.1584-1587.1990. View

5.
Mackey B, Derrick C . Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986; 61(5):389-93. DOI: 10.1111/j.1365-2672.1986.tb04301.x. View