» Articles » PMID: 16533168

Control by Cytochrome C Oxidase of the Cellular Oxidative Phosphorylation System Depends on the Mitochondrial Energy State

Overview
Journal Biochem J
Specialty Biochemistry
Date 2006 Mar 15
PMID 16533168
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Recent measurements of the flux control exerted by cytochrome c oxidase on the respiratory activity in intact cells have led to a re-appraisal of its regulatory function. We have further extended this in vivo study in the framework of the Metabolic Control Analysis and evaluated the impact of the mitochondrial transmembrane electrochemical potential (Deltamu(H+)) on the control strength of the oxidase. The results indicate that, under conditions mimicking the mitochondrial State 4 of respiration, both the flux control coefficient and the threshold value of cytochrome oxidase are modified with respect to the uncoupled condition. The results obtained are consistent with a model based on changes in the assembly state of the oxidative phosphorylation enzyme complexes and possible implications in the understanding of exercise-intolerance of human neuromuscular degenerative diseases are discussed.

Citing Articles

Synergistic celecoxib and dimethyl-celecoxib combinations block cervix cancer growth through multiple mechanisms.

Robledo-Cadena D, Pacheco-Velazquez S, Vargas-Navarro J, Padilla-Flores J, Lopez-Marure R, Perez-Torres I PLoS One. 2024; 19(9):e0308233.

PMID: 39325741 PMC: 11426494. DOI: 10.1371/journal.pone.0308233.


Phosphorylations and Acetylations of Cytochrome Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis.

Morse P, Arroum T, Wan J, Pham L, Vaishnav A, Bell J Cells. 2024; 13(6.

PMID: 38534337 PMC: 10969761. DOI: 10.3390/cells13060493.


Mitochondrial sAC-cAMP-PKA Axis Modulates the ΔΨ-Dependent Control Coefficients of the Respiratory Chain Complexes: Evidence of Respirasome Plasticity.

Scrima R, Cela O, Rosiello M, Nabi A, Piccoli C, Capitanio G Int J Mol Sci. 2023; 24(20).

PMID: 37894823 PMC: 10607245. DOI: 10.3390/ijms242015144.


On the Mechanism of Sustained Mitochondrial Membrane Potential Without Functioning Complex IV.

Takahashi E, Yamaoka Y Adv Exp Med Biol. 2022; 1395:367-372.

PMID: 36527664 DOI: 10.1007/978-3-031-14190-4_60.


Role of Copper on Mitochondrial Function and Metabolism.

Ruiz L, Libedinsky A, Elorza A Front Mol Biosci. 2021; 8:711227.

PMID: 34504870 PMC: 8421569. DOI: 10.3389/fmolb.2021.711227.


References
1.
Kunz W, KUDIN A, Vielhaber S, Elger C, Attardi G, Villani G . Flux control of cytochrome c oxidase in human skeletal muscle. J Biol Chem. 2000; 275(36):27741-5. DOI: 10.1074/jbc.M004833200. View

2.
Heijnen J, van Gulik W, Shimizu H, Stephanopoulos G . Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data. Metab Eng. 2004; 6(4):391-400. DOI: 10.1016/j.ymben.2004.07.002. View

3.
Mitchell P . Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966; 41(3):445-502. DOI: 10.1111/j.1469-185x.1966.tb01501.x. View

4.
Kang D, Hamasaki N . Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem. 2005; 12(4):429-41. DOI: 10.2174/0929867053363081. View

5.
Brand M, Vallis B, Kesseler A . The sum of flux control coefficients in the electron-transport chain of mitochondria. Eur J Biochem. 1994; 226(3):819-29. DOI: 10.1111/j.1432-1033.1994.00819.x. View