» Articles » PMID: 1651852

Diazepam Binding Inhibitor and Its Processing Products Stimulate Mitochondrial Steroid Biosynthesis Via an Interaction with Mitochondrial Benzodiazepine Receptors

Overview
Journal Endocrinology
Specialty Endocrinology
Date 1991 Sep 1
PMID 1651852
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

A recognition site for benzodiazepines structurally different from that linked to various gamma-aminobutyric acid A (GABAA) receptor subtypes is located on the outer mitochondrial membranes of steroidogenic cells. This protein has been signified to be important in the regulation of steroid biosynthesis. Because of its location it is designated herein as the mitochondrial benzodiazepine receptor (MBR). A putative endogenous ligand for MBR is the peptide diazepam binding inhibitor (DBI), previously shown to displace drugs from MBR and to be expressed and stored in steroidogenic cells rich in MBR. The two model systems used to study steroidogenic regulation by DBI were the Y-1 adrenocortical and MA-10 Leydig cell lines previously shown to be applicable in studies of mitochondrial steroidogenesis. Both cell lines contain DBI as well as DBI processing products, including the DBI fragments that on reverse phase HPLC coelute with the naturally occurring triakontatetraneuropeptide [TTN; DBI-(17-50)] and octadecaneuropeptide [DBI-(33-50)]. When DBI purified from rat brain was added to mitochondria prepared from Y-1 and MA-10 cell lines, it increased the rates of pregnenolone formation in a dose-related manner. In both cell lines, maximal stimulation (3-fold) of mitochondrial steroidogenesis was obtained with 0.33 microM DBI, with an EC50 of approximately 0.1 microM. However, DBI concentrations higher than 1 microM caused a smaller increase in pregnenolone formation. Flunitrazepam, a benzodiazepine that binds with high nanomolar affinity to MBR, was recently shown to act as an antagonist of ACTH and LH/hCG-induced steroidogenesis and was found in the present studies to inhibit DBI-stimulated mitochondrial steroidogenesis. During the incubation with mitochondria, DBI was partially processed to different peptide fragments, including octadecaneuropeptide and TTN. To determine whether DBI processing products influence mitochondrial steroid biosynthesis, several DBI fragments and other peptides structurally unrelated to DBI were tested. Among these, only TTN stimulated mitochondrial steroid synthesis in a dose-dependent manner similar to DBI.

Citing Articles

From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI.

Alquier T, Christian-Hinman C, Alfonso J, Faergeman N Trends Endocrinol Metab. 2021; 32(11):890-903.

PMID: 34565656 PMC: 8785413. DOI: 10.1016/j.tem.2021.08.009.


TSPO: an emerging role in appetite for a therapeutically promising biomarker.

Wang J, Beecher K Open Biol. 2021; 11(8):210173.

PMID: 34343461 PMC: 8331234. DOI: 10.1098/rsob.210173.


TSPO protein binding partners in bacteria, animals, and plants.

Hiser C, Montgomery B, Ferguson-Miller S J Bioenerg Biomembr. 2021; 53(4):463-487.

PMID: 34191248 PMC: 8243069. DOI: 10.1007/s10863-021-09905-4.


The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers.

Islinger M, Costello J, Kors S, Soupene E, Levine T, Kuypers F Biochim Biophys Acta Mol Cell Res. 2020; 1867(5):118675.

PMID: 32044385 PMC: 7057175. DOI: 10.1016/j.bbamcr.2020.118675.


Induction of cystic ovarian follicles (COFs) in cattle by using an intrafollicular injection of indomethacin.

Lapp R, Rottgen V, Viergutz T, Weitzel J, Vernunft A J Reprod Dev. 2020; 66(2):181-188.

PMID: 31983719 PMC: 7175383. DOI: 10.1262/jrd.2019-107.