Ischemia Reperfusion Dysfunction Changes Model-estimated Kinetics of Myofilament Interaction Due to Inotropic Drugs in Isolated Hearts
Overview
Authors
Affiliations
Background: The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury.
Methods: We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP.
Results: We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 microM) reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 microM) reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 microM) increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 microM) enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia.
Conclusion: Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury.
Rhodes S, Camara A, Aldakkak M, Heisner J, Stowe D Physiol Rep. 2015; 3(8).
PMID: 26290532 PMC: 4562572. DOI: 10.14814/phy2.12486.