» Articles » PMID: 16510714

Rolling Blackout is Required for Synaptic Vesicle Exocytosis

Overview
Journal J Neurosci
Specialty Neurology
Date 2006 Mar 3
PMID 16510714
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.

Citing Articles

Efr3b is essential for social recognition by modulating the excitability of CA2 pyramidal neurons.

Wei X, Wang J, Yang E, Zhang Y, Qian Q, Li X Proc Natl Acad Sci U S A. 2024; 121(3):e2314557121.

PMID: 38190534 PMC: 10801834. DOI: 10.1073/pnas.2314557121.


Maintenance of homeostatic plasticity at the neuromuscular synapse requires continuous IP-directed signaling.

James T, Zwiefelhofer D, Frank C Elife. 2019; 8.

PMID: 31180325 PMC: 6557630. DOI: 10.7554/eLife.39643.


Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway.

Brusich D, Spring A, James T, Yeates C, Helms T, Frank C PLoS Genet. 2018; 14(8):e1007577.

PMID: 30080864 PMC: 6095605. DOI: 10.1371/journal.pgen.1007577.


Genetic dissection of the phosphoinositide cycle in photoreceptors.

Liu C, Bollepalli M, Long S, Asteriti S, Tan J, Brill J J Cell Sci. 2018; 131(8).

PMID: 29567856 PMC: 5963847. DOI: 10.1242/jcs.214478.


Insufficiency Attenuates the Degeneration of Spiral Ganglion Neurons after Hair Cell Loss.

Hu H, Ye B, Zhang L, Wang Q, Liu Z, Ji S Front Mol Neurosci. 2017; 10:86.

PMID: 28424585 PMC: 5372784. DOI: 10.3389/fnmol.2017.00086.


References
1.
Lin R, Scheller R . Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol. 2000; 16:19-49. DOI: 10.1146/annurev.cellbio.16.1.19. View

2.
Rao S, Stewart B, Rivlin P, Vilinsky I, Watson B, Lang C . Two distinct effects on neurotransmission in a temperature-sensitive SNAP-25 mutant. EMBO J. 2001; 20(23):6761-71. PMC: 125330. DOI: 10.1093/emboj/20.23.6761. View

3.
Kawasaki F, Mattiuz A, Ordway R . Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci. 1998; 18(24):10241-9. PMC: 6793375. View

4.
Jackson F, Wilson S, Hall L . The tip-E mutation of Drosophila decreases saxitoxin binding and interacts with other mutations affecting nerve membrane excitability. J Neurogenet. 1986; 3(1):1-17. DOI: 10.3109/01677068609106891. View

5.
Koenig J, Ikeda K . Synaptic vesicles have two distinct recycling pathways. J Cell Biol. 1996; 135(3):797-808. PMC: 2121054. DOI: 10.1083/jcb.135.3.797. View