» Articles » PMID: 1648416

Voltage-dependent Gap Junction Channels Are Formed by Connexin32, the Major Gap Junction Protein of Rat Liver

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1991 Apr 1
PMID 1648416
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134).

Citing Articles

Regulation of cellular communication by signaling microdomains in the blood vessel wall.

Billaud M, Lohman A, Johnstone S, Biwer L, Mutchler S, Isakson B Pharmacol Rev. 2014; 66(2):513-69.

PMID: 24671377 PMC: 3973613. DOI: 10.1124/pr.112.007351.


The diverse functional roles and regulation of neuronal gap junctions in the retina.

Bloomfield S, Volgyi B Nat Rev Neurosci. 2009; 10(7):495-506.

PMID: 19491906 PMC: 3381350. DOI: 10.1038/nrn2636.


Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons.

Rash J, Yasumura T, Dudek F, Nagy J J Neurosci. 2001; 21(6):1983-2000.

PMID: 11245683 PMC: 1804287.


Voltage-clamp analysis of gap junctions between embryonic muscles in Drosophila.

Gho M J Physiol. 1994; 481 ( Pt 2):371-83.

PMID: 7537815 PMC: 1155936. DOI: 10.1113/jphysiol.1994.sp020446.


Gap junction channels: distinct voltage-sensitive and -insensitive conductance states.

Moreno A, Rook M, Fishman G, Spray D Biophys J. 1994; 67(1):113-9.

PMID: 7522596 PMC: 1225340. DOI: 10.1016/S0006-3495(94)80460-6.


References
1.
Furshpan E, POTTER D . Transmission at the giant motor synapses of the crayfish. J Physiol. 1959; 145(2):289-325. PMC: 1356828. DOI: 10.1113/jphysiol.1959.sp006143. View

2.
Ehrenstein G, Blumenthal R, Latorre R, Lecar H . Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer. J Gen Physiol. 1974; 63(6):707-21. PMC: 2203575. DOI: 10.1085/jgp.63.6.707. View

3.
Roy C, Spray D, Bennett M . Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophys J. 1991; 59(1):76-92. PMC: 1281120. DOI: 10.1016/S0006-3495(91)82200-7. View

4.
Jaslove S, Brink P . The mechanism of rectification at the electrotonic motor giant synapse of the crayfish. Nature. 1986; 323(6083):63-5. DOI: 10.1038/323063a0. View

5.
Burt J, Spray D . Single-channel events and gating behavior of the cardiac gap junction channel. Proc Natl Acad Sci U S A. 1988; 85(10):3431-4. PMC: 280225. DOI: 10.1073/pnas.85.10.3431. View