Alimohamadi H, Luo E, Yang R, Gupta S, Nolden K, Mandal T
bioRxiv. 2024; .
PMID: 39229060
PMC: 11370335.
DOI: 10.1101/2024.08.19.608723.
Tagiltsev G, Haselwandter C, Scheuring S
Sci Adv. 2021; 7(33).
PMID: 34389539
PMC: 8363152.
DOI: 10.1126/sciadv.abg9934.
Ma R, Berro J
Biophys J. 2021; 120(9):1625-1640.
PMID: 33675763
PMC: 8204219.
DOI: 10.1016/j.bpj.2021.02.033.
Nickaeen M, Berro J, Pollard T, Slepchenko B
Mol Biol Cell. 2019; 30(16):2014-2024.
PMID: 31242058
PMC: 6727779.
DOI: 10.1091/mbc.E19-01-0059.
Lherbette M, Redlingshofer L, Brodsky F, Schaap I, Dannhauser P
FEBS J. 2019; 286(20):4074-4085.
PMID: 31199077
PMC: 6852553.
DOI: 10.1111/febs.14961.
Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
Deng H, Dutta P, Liu J
Soft Matter. 2019; 15(25):5128-5137.
PMID: 31190048
PMC: 7570437.
DOI: 10.1039/c9sm00751b.
Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis.
Deng H, Dutta P, Liu J
Nanoscale. 2019; 11(23):11227-11235.
PMID: 31157808
PMC: 6634982.
DOI: 10.1039/c9nr02710f.
Differences in the metabolite composition and mechanical properties of extracellular vesicles secreted by hepatic cellular models.
Royo F, Gil-Carton D, Gonzalez E, Mleczko J, Palomo L, Perez-Cormenzana M
J Extracell Vesicles. 2019; 8(1):1575678.
PMID: 30788084
PMC: 6374943.
DOI: 10.1080/20013078.2019.1575678.
The role of traction in membrane curvature generation.
Alimohamadi H, Vasan R, Hassinger J, Stachowiak J, Rangamani P
Mol Biol Cell. 2018; 29(16):2024-2035.
PMID: 30044708
PMC: 6232966.
DOI: 10.1091/mbc.E18-02-0087.
Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
Deng H, Dutta P, Liu J
Biochim Biophys Acta Gen Subj. 2018; 1862(9):2104-2111.
PMID: 29959983
PMC: 6152834.
DOI: 10.1016/j.bbagen.2018.06.018.
Actin growth profile in clathrin-mediated endocytosis.
Tweten D, Bayly P, Carlsson A
Phys Rev E. 2017; 95(5-1):052414.
PMID: 28618637
PMC: 5792084.
DOI: 10.1103/PhysRevE.95.052414.
Design principles for robust vesiculation in clathrin-mediated endocytosis.
Hassinger J, Oster G, Drubin D, Rangamani P
Proc Natl Acad Sci U S A. 2017; 114(7):E1118-E1127.
PMID: 28126722
PMC: 5320970.
DOI: 10.1073/pnas.1617705114.
Clathrin polymerization exhibits high mechano-geometric sensitivity.
Irajizad E, Walani N, Veatch S, Liu A, Agrawal A
Soft Matter. 2017; 13(7):1455-1462.
PMID: 28124714
PMC: 5452080.
DOI: 10.1039/c6sm02623k.
Local Turgor Pressure Reduction via Channel Clustering.
Scher-Zagier J, Carlsson A
Biophys J. 2016; 111(12):2747-2756.
PMID: 28002750
PMC: 5192740.
DOI: 10.1016/j.bpj.2016.10.040.
Membrane remodeling and mechanics: Experiments and simulations of α-Synuclein.
West A, Brummel B, Braun A, Rhoades E, Sachs J
Biochim Biophys Acta. 2016; 1858(7 Pt B):1594-609.
PMID: 26972046
PMC: 5081225.
DOI: 10.1016/j.bbamem.2016.03.012.
Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules.
Lowengrub J, Allard J, Aland S
J Comput Phys. 2016; 309:112-128.
PMID: 26869729
PMC: 4746022.
DOI: 10.1016/j.jcp.2015.12.055.
Membrane Mechanics of Endocytosis in Cells with Turgor.
Dmitrieff S, Nedelec F
PLoS Comput Biol. 2015; 11(10):e1004538.
PMID: 26517669
PMC: 4627814.
DOI: 10.1371/journal.pcbi.1004538.
Endocytic proteins drive vesicle growth via instability in high membrane tension environment.
Walani N, Torres J, Agrawal A
Proc Natl Acad Sci U S A. 2015; 112(12):E1423-32.
PMID: 25775509
PMC: 4378438.
DOI: 10.1073/pnas.1418491112.
A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats.
Saleem M, Morlot S, Hohendahl A, Manzi J, Lenz M, Roux A
Nat Commun. 2015; 6:6249.
PMID: 25695735
PMC: 4346611.
DOI: 10.1038/ncomms7249.
Mechanisms shaping cell membranes.
Kozlov M, Campelo F, Liska N, Chernomordik L, Marrink S, McMahon H
Curr Opin Cell Biol. 2014; 29:53-60.
PMID: 24747171
PMC: 4180517.
DOI: 10.1016/j.ceb.2014.03.006.