The Reactions of the Oxidase and Reductases of Paracoccus Denitrificans with Cytochromes C
Overview
Biology
Endocrinology
Authors
Affiliations
Electron transport in the Paracoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochrome c552 than with either soluble Paracoccus c550 or bovine cytochrome c; a pool function for cytochrome c is not necessary. Low concentrations of Paracoccus or bovine cytochrome c stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the "back side" of Paracoccus c which is not present in mitochondrial c could be a control mechanism for Paracoccus reactions. Paracoccus oxidase and reductase reactions with bovine c show the same properties as mammalian systems; and this is true of Paracoccus oxidase reactions with its own soluble cytochrome c if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochrome c include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies to Paracoccus cytochrome c; and (3) reaction of another bacterial cytochrome c with Paracoccus reductases but not oxidase. Rapid electron transport occurs in cytochrome c-less mutants of Paracoccus, suggesting that the reactions result from collision of diffusing complexes.
Covian R, Edwards L, He Y, Kim G, Houghton C, Levine R PLoS One. 2021; 16(11):e0259636.
PMID: 34748578 PMC: 8575270. DOI: 10.1371/journal.pone.0259636.