» Articles » PMID: 16453458

Interaction of Cytochrome C and Its Precursor Apocytochrome C with Various Phospholipids

Overview
Journal EMBO J
Date 1983 Jan 1
PMID 16453458
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The effects of cytochrome c and apocytochrome c on the structural properties of various membrane phospholipids in model systems were compared by binding, calorimetric, permeability, P n.m.r. and freeze-fracture experiments. Both cytochrome c and apocytochrome c experience strong interactions only with negatively charged phospholipids; apocytochrome c interacted more strongly than cytochrome c. These interactions are primarily electrostatic but also have a hydrophobic character. Cytochrome c as well as apocytochrome c induces changes in the structure of cardiolipin liposomes as is shown by P n.m.r. and freeze-fracture electron microscopy. Cytochrome c does not affect the bilayer structure of phosphatidylserine. In contrast, interaction of apocytochrome c with this phospholipid results in changes of the P n.m.r. bilayer spectrum of the liposomes and also particles are observed at the fracture faces. The results are discussed in relation to the import of the protein into the mitochondrion.

Citing Articles

Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome and Cardiolipin.

Diaz-Quintana A, Perez-Mejias G, Guerra-Castellano A, De la Rosa M, Diaz-Moreno I Oxid Med Cell Longev. 2020; 2020:6813405.

PMID: 32377304 PMC: 7193304. DOI: 10.1155/2020/6813405.


Method for measuring the unbinding energy of strongly-bound membrane-associated proteins.

Bauve E, Vernon B, Ye D, Rogers D, Siegrist C, Carson B Biochim Biophys Acta. 2016; 1858(11):2753-2762.

PMID: 27425029 PMC: 5266593. DOI: 10.1016/j.bbamem.2016.07.004.


Structural transformations of cytochrome c upon interaction with cardiolipin.

Muenzner J, Pletneva E Chem Phys Lipids. 2013; 179:57-63.

PMID: 24252639 PMC: 3979421. DOI: 10.1016/j.chemphyslip.2013.11.002.


Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling.

Hanschmann E, Godoy J, Berndt C, Hudemann C, Lillig C Antioxid Redox Signal. 2013; 19(13):1539-605.

PMID: 23397885 PMC: 3797455. DOI: 10.1089/ars.2012.4599.


The role of hydrophobic interactions in positioning of peripheral proteins in membranes.

Lomize A, Pogozheva I, Lomize M, Mosberg H BMC Struct Biol. 2007; 7:44.

PMID: 17603894 PMC: 1934363. DOI: 10.1186/1472-6807-7-44.


References
1.
Papahadjopoulos D, Moscarello M, Eylar E, Isac T . Effects of proteins on thermotropic phase transitions of phospholipid membranes. Biochim Biophys Acta. 1975; 401(3):317-35. DOI: 10.1016/0005-2736(75)90233-3. View

2.
de Kruijff B . 13C NMR studies on [4-13C] cholesterol incorporated in sonicated phosphatidylcholine vesicles. Biochim Biophys Acta. 1978; 506(2):173-82. DOI: 10.1016/0005-2736(78)90388-7. View

3.
Mombers C, Verkleij A, de Gier J, Van Deenen L . The interaction of spectrin-actin and synthetic phospholipids. II. The interaction with phosphatidylserine. Biochim Biophys Acta. 1979; 551(2):271-81. DOI: 10.1016/0005-2736(89)90005-9. View

4.
Comfurius P, ZWAAL R . The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977; 488(1):36-42. DOI: 10.1016/0005-2760(77)90120-5. View

5.
Deamer D, Bangham A . Large volume liposomes by an ether vaporization method. Biochim Biophys Acta. 1976; 443(3):629-34. DOI: 10.1016/0005-2736(76)90483-1. View