» Articles » PMID: 16412219

Proteomics of Early Zebrafish Embryos

Overview
Journal BMC Dev Biol
Publisher Biomed Central
Date 2006 Jan 18
PMID 16412219
Citations 154
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Zebrafish (D. rerio) has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D) gel electrophoresis and proteomics have yet to be developed.

Results: As a prerequisite to carry out proteomic experiments with early zebrafish embryos, we developed a method to efficiently remove the yolk from large batches of embryos. This method enabled high resolution 2D gel electrophoresis and improved Western blotting considerably. Here, we provide detailed protocols for proteomics in zebrafish from sample preparation to mass spectrometry (MS), including a comparison of databases for MS identification of zebrafish proteins.

Conclusion: The provided protocols for proteomic analysis of early embryos enable research to be taken in novel directions in embryogenesis.

Citing Articles

Zebrafish and cellular models of SELENON-Congenital myopathy exhibit novel embryonic and metabolic phenotypes.

Barraza-Flores P, Moghadaszadeh B, Lee W, Isaac B, Sun L, Hickey E Skelet Muscle. 2025; 15(1):7.

PMID: 40087793 DOI: 10.1186/s13395-025-00376-4.


Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis.

Cossmann J, Kos P, Varamogianni-Mamatsi V, Assenheimer D, Bischof T, Kuhn T Nat Commun. 2025; 16(1):1833.

PMID: 39979259 PMC: 11842872. DOI: 10.1038/s41467-025-56889-5.


Effect of genomic regions harboring putative lethal haplotypes on reproductive performance in closed experimental selection lines of Nellore cattle.

Rodrigues G, Cyrillo J, Mota L, Schmidt P, Valente J, Oliveira E Sci Rep. 2025; 15(1):4113.

PMID: 39900660 PMC: 11791054. DOI: 10.1038/s41598-025-88501-7.


The dynamics and functional impact of tRNA repertoires during early embryogenesis in zebrafish.

Reimao-Pinto M, Behrens A, Forcelloni S, Frohlich K, Kaya S, Nedialkova D EMBO J. 2024; 43(22):5747-5779.

PMID: 39402326 PMC: 11574265. DOI: 10.1038/s44318-024-00265-4.


Protein profiling of zebrafish embryos unmasks regulatory layers during early embryogenesis.

da Silva Pescador G, Baia Amaral D, Varberg J, Zhang Y, Hao Y, Florens L Cell Rep. 2024; 43(10):114769.

PMID: 39302832 PMC: 11544563. DOI: 10.1016/j.celrep.2024.114769.


References
1.
Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R . The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000; 21(6):1037-53. DOI: 10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V. View

2.
Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R . The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res. 2004; 33(Database issue):D71-4. PMC: 540018. DOI: 10.1093/nar/gki064. View

3.
Bosworth 4th C, Chou C, Cole R, Rees B . Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics. 2005; 5(5):1362-71. DOI: 10.1002/pmic.200401002. View

4.
Hill A, Teraoka H, Heideman W, Peterson R . Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 2005; 86(1):6-19. DOI: 10.1093/toxsci/kfi110. View

5.
Gharbi S, Gaffney P, Yang A, Zvelebil M, Cramer R, Waterfield M . Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics. 2002; 1(2):91-8. DOI: 10.1074/mcp.t100007-mcp200. View