» Articles » PMID: 16404622

Renal Tubular Damage/dysfunction: Key to the Formation of Kidney Stones

Overview
Journal Urol Res
Specialty Urology
Date 2006 Jan 13
PMID 16404622
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Supersaturation is the driving force behind crystal formation in the kidneys. It can, however, result only in the formation of crystals which can be harmlessly expelled. For stone formation, crystals must form in the kidneys and be retained there, which is indeed a rare occurrence. Crystalluria is common while stone formation is not. Only pathological changes in the kidneys including renal injury and dysfunction can accomplish crystal retention. Lethal epithelial cellular injury promotes crystal nucleation, aggregation and retention. Sub-lethal injury or dysfunctional cells may produce ineffective crystallization modulators and localized areas of supersaturation in the interstitium. The former will affect crystallization in the urine while the latter may cause precipitation in the interstitium and development of Randall's plaques.

Citing Articles

An analysis of the burden of urolithiasis: differences between the global, China, India and the United States, with projections through 2050.

Han S, Zhao S, Zhong R, Liu H, Liu L, Yan Y Urolithiasis. 2025; 53(1):32.

PMID: 39954073 DOI: 10.1007/s00240-025-01695-3.


Calcium sensing receptor regulate claudin-14 via PKA-STAT3 pathway in rat model of nephrolithiasis.

Luo P, Chen T, Zheng L, Zou J, Zou J, Li W Front Pharmacol. 2024; 15:1477122.

PMID: 39697555 PMC: 11652147. DOI: 10.3389/fphar.2024.1477122.


The impact of crystal phase transition on the hardness and structure of kidney stones.

Michibata U, Maruyama M, Tanaka Y, Yoshimura M, Yoshikawa H, Takano K Urolithiasis. 2024; 52(1):57.

PMID: 38563829 PMC: 10987347. DOI: 10.1007/s00240-024-01556-5.


Associations between smoke exposure and kidney stones: results from the NHANES (2007-2018) and Mendelian randomization analysis.

Huang Y, Wang H, Xu C, Zhou F, Su H, Zhang Y Front Med (Lausanne). 2023; 10:1218051.

PMID: 37636579 PMC: 10450509. DOI: 10.3389/fmed.2023.1218051.


The rs223114 polymorphism and the risk of nephrolithiasis: A case-control study from the Taiwan biobank.

Lin C, Chen I, Chen Y, Lin Y, Chang J, Wang T Front Endocrinol (Lausanne). 2023; 14:1074012.

PMID: 36967798 PMC: 10036833. DOI: 10.3389/fendo.2023.1074012.


References
1.
Khan S, Cockrell C, Finlayson B, HACKETT R . Crystal retention by injured urothelium of the rat urinary bladder. J Urol. 1984; 132(1):153-7. DOI: 10.1016/s0022-5347(17)49509-7. View

2.
Khan S, Shevock P, HACKETT R . Membrane-associated crystallization of calcium oxalate in vitro. Calcif Tissue Int. 1990; 46(2):116-20. DOI: 10.1007/BF02556095. View

3.
Huang H, Ma M, Chen C, Chen J . Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology. 2003; 62(6):1123-8. DOI: 10.1016/s0090-4295(03)00764-7. View

4.
Kok D, Khan S . Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 1994; 46(3):847-54. DOI: 10.1038/ki.1994.341. View

5.
Khan S, Shevock P, HACKETT R . Urinary enzymes and calcium oxalate urolithiasis. J Urol. 1989; 142(3):846-9. DOI: 10.1016/s0022-5347(17)38928-0. View