» Articles » PMID: 163817

6-Phosphogluconate Dehydratase Deficiency in Pleiotropic Carbohydrate-negative Mutant Strains of Pseudomonas Aeruginosa

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1975 Mar 1
PMID 163817
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Mutants of Pseudomonas aeruginosa, strain PAO, have been isolated that are unable to grow on mannitol, glucose, gluconate, or 2-ketogluconate, cut that exhibit wild-type growth on pyruvate, lactate, citrate, succinate, or acetate. Although some of these mutants were also unable to grow on glycerol, the mutations formed a single linkage group by quantitative transductional analysis with phage F116 on glucose minimal agar medium. Cell extracts of all mutant strains were either lacking or severely deficient in 6-phosphogluconate dehydratase activity. Glu+ transductants derived from mutant strains that retained the wild-type ability for growth at the expense of glycerol also regained the ability to grow on all C-6 compounds. Although a role for the pentose phosphate pathway in the catabolism of C6 substrates was not found, a functional Entner-Doudoroff pathway appears to be essential for the catabolism of mannitol, glucose, gluconate, and 2-ketogluconate.

Citing Articles

Characterization of the Entner-Doudoroff pathway in catheter-associated urinary tract infections.

El Husseini N, Mekonnen S, Hall C, Cole S, Carter J, Belew A J Bacteriol. 2023; 206(1):e0036123.

PMID: 38047680 PMC: 10809998. DOI: 10.1128/jb.00361-23.


Characterization of the Entner-Douderoff Pathway in Catheter-associated Urinary Tract Infections.

El Husseini N, Mekonnen S, Hall C, Cole S, Carter J, Belew A bioRxiv. 2023; .

PMID: 38014081 PMC: 10680737. DOI: 10.1101/2023.11.14.567044.


A Case of Adaptive Laboratory Evolution (ALE): Biodegradation of Furfural by CECT 5344.

Igeno M, Macias D, Blasco R Genes (Basel). 2019; 10(7).

PMID: 31261932 PMC: 6678421. DOI: 10.3390/genes10070499.


Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.

Poblete-Castro I, Wittmann C, Nikel P Microb Biotechnol. 2019; 13(1):32-53.

PMID: 30883020 PMC: 6922529. DOI: 10.1111/1751-7915.13400.


Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.

Hottes A, Meewan M, Yang D, Arana N, Romero P, McAdams H J Bacteriol. 2004; 186(5):1448-61.

PMID: 14973021 PMC: 344409. DOI: 10.1128/JB.186.5.1448-1461.2004.


References
1.
Guymon L, Eagon R . Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa. J Bacteriol. 1974; 117(3):1261-9. PMC: 246609. DOI: 10.1128/jb.117.3.1261-1269.1974. View

2.
Holloway B, Rossiter H, Burgess D, Dodge J . Aeruginocin tolerant mutants of Pseudomonas aeruginosa. Genet Res. 1973; 22(3):239-53. DOI: 10.1017/s0016672300013069. View

3.
Anderson R, Wood W . Carbohydrate metabolism in microorganisms. Annu Rev Microbiol. 1969; 23:539-78. DOI: 10.1146/annurev.mi.23.100169.002543. View

4.
Ng F, DAWES E . Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J. 1973; 132(2):129-40. PMC: 1177573. DOI: 10.1042/bj1320129. View

5.
Tiwari N, Campbell J . Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate media. Biochim Biophys Acta. 1969; 192(3):395-401. DOI: 10.1016/0304-4165(69)90388-2. View