Wang W, Stephens M
J Mach Learn Res. 2023; 22.
PMID: 37920532
PMC: 10621241.
Wu J, Gupta M, Hussein A, Gerstenfeld L
J Appl Stat. 2021; 48(10):1730-1754.
PMID: 34295011
PMC: 8291340.
DOI: 10.1080/02664763.2020.1772733.
Chen X, Gu J, Neuwald A, Hilakivi-Clarke L, Clarke R, Xuan J
Sci Rep. 2020; 10(1):7960.
PMID: 32409786
PMC: 7224214.
DOI: 10.1038/s41598-020-63043-2.
Davies V, Harvey W, Reeve R, Husmeier D
J R Stat Soc Ser C Appl Stat. 2019; 68(4):859-885.
PMID: 31598013
PMC: 6774336.
DOI: 10.1111/rssc.12338.
Omony J, de Jong A, Kok J, van Hijum S
PLoS One. 2019; 14(5):e0214868.
PMID: 31116749
PMC: 6530827.
DOI: 10.1371/journal.pone.0214868.
CRNET: an efficient sampling approach to infer functional regulatory networks by integrating large-scale ChIP-seq and time-course RNA-seq data.
Chen X, Gu J, Wang X, Jung J, Wang T, Hilakivi-Clarke L
Bioinformatics. 2017; 34(10):1733-1740.
PMID: 29280996
PMC: 5946876.
DOI: 10.1093/bioinformatics/btx827.
Efficient inference for sparse latent variable models of transcriptional regulation.
Dai Z, Iqbal M, Lawrence N, Rattray M
Bioinformatics. 2017; 33(23):3776-3783.
PMID: 28961802
PMC: 5860323.
DOI: 10.1093/bioinformatics/btx508.
On the inconsistency of ℓ -penalised sparse precision matrix estimation.
Heinavaara O, Leppa-Aho J, Corander J, Honkela A
BMC Bioinformatics. 2017; 17(Suppl 16):448.
PMID: 28105909
PMC: 5249033.
DOI: 10.1186/s12859-016-1309-x.
Genomic data assimilation using a higher moment filtering technique for restoration of gene regulatory networks.
Hasegawa T, Mori T, Yamaguchi R, Shimamura T, Miyano S, Imoto S
BMC Syst Biol. 2015; 9:14.
PMID: 25890175
PMC: 4371723.
DOI: 10.1186/s12918-015-0154-2.
BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
Gu J, Wang X, Halakivi-Clarke L, Clarke R, Xuan J
BMC Bioinformatics. 2014; 15 Suppl 9:S6.
PMID: 25252852
PMC: 4168709.
DOI: 10.1186/1471-2105-15-S9-S6.
Inference of gene regulatory networks incorporating multi-source biological knowledge via a state space model with L1 regularization.
Hasegawa T, Yamaguchi R, Nagasaki M, Miyano S, Imoto S
PLoS One. 2014; 9(8):e105942.
PMID: 25162401
PMC: 4146587.
DOI: 10.1371/journal.pone.0105942.
mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks.
Shi X, Gu J, Chen X, Shajahan A, Hilakivi-Clarke L, Clarke R
BMC Syst Biol. 2014; 7 Suppl 5:S4.
PMID: 24564939
PMC: 4028818.
DOI: 10.1186/1752-0509-7-S5-S4.
FacPad: Bayesian sparse factor modeling for the inference of pathways responsive to drug treatment.
Ma H, Zhao H
Bioinformatics. 2012; 28(20):2662-70.
PMID: 22923307
PMC: 3467747.
DOI: 10.1093/bioinformatics/bts502.
Topology of transcriptional regulatory networks: testing and improving.
Hasdemir D, Smits G, Westerhuis J, Smilde A
PLoS One. 2012; 7(7):e40082.
PMID: 22844399
PMC: 3402518.
DOI: 10.1371/journal.pone.0040082.
One Hand Clapping: detection of condition-specific transcription factor interactions from genome-wide gene activity data.
Dumcke S, Seizl M, Etzold S, Pirkl N, Martin D, Cramer P
Nucleic Acids Res. 2012; 40(18):8883-92.
PMID: 22844089
PMC: 3467085.
DOI: 10.1093/nar/gks695.
Regulatory component analysis: a semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge.
Wang C, Xuan J, Shih I, Clarke R, Wang Y
Signal Processing. 2012; 92(8):1902-1915.
PMID: 22685363
PMC: 3367667.
DOI: 10.1016/j.sigpro.2011.11.028.
Learning transcriptional regulatory relationships using sparse graphical models.
Zhang X, Cheng W, Listgarten J, Kadie C, Huang S, Wang W
PLoS One. 2012; 7(5):e35762.
PMID: 22586449
PMC: 3346750.
DOI: 10.1371/journal.pone.0035762.
Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor.
Iqbal M, Mast Y, Amin R, Hodgson D, Wohlleben W, Burroughs N
Nucleic Acids Res. 2012; 40(12):5227-39.
PMID: 22406834
PMC: 3384326.
DOI: 10.1093/nar/gks205.
Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks.
Meng J, Zhang J, Chen Y, Huang Y
Proteome Sci. 2011; 9 Suppl 1:S9.
PMID: 22166063
PMC: 3289087.
DOI: 10.1186/1477-5956-9-S1-S9.
Technologies and approaches to elucidate and model the virulence program of salmonella.
McDermott J, Yoon H, Nakayasu E, Metz T, Hyduke D, Kidwai A
Front Microbiol. 2011; 2:121.
PMID: 21687430
PMC: 3108385.
DOI: 10.3389/fmicb.2011.00121.